Powered by AppSignal & Oban Pro
Would you like to see your link here? Contact us

農地のNDVI

livebooks/tellus/fields_ndvi.livemd

農地のNDVI

Mix.install(
  [
    {:nx, "~> 0.9"},
    {:evision, "~> 0.2"},
    {:exla, "~> 0.9"},
    {:geo, "~> 3.5"},
    {:jason, "~> 1.4"},
    {:kino, "~> 0.14"},
    {:kino_maplibre, "~> 0.1"},
    {:kino_vega_lite, "~> 0.1"}
  ],
  config: [nx: [default_backend: EXLA.Backend]]
)

データの指定

提供:だいち(ALOS) AVNIR-2 データ(JAXA)

だいち(ALOS) AVNIR-2 の仕様はこちら

https://www.eorc.jaxa.jp/ALOS/jp/alos/sensor/avnir2_j.htm

scene_id_list = [
  "202ce08d-ba4b-4ffe-8165-109fd3a8b917",
  "34d8dc6f-fdd1-4542-a038-c1235a5a97fa",
  "12ad308b-6ce1-40ec-9ebf-f0215c30500e",
  "e2e85b2e-a208-4a65-87fd-b92721b037a8",
  "208a3618-7700-421b-bf05-fd59551cc1aa",
  "d5ce7320-5b25-4ced-bda5-0e25a9d75940",
  "9d14706f-cee7-4eb4-9151-2558609c3de0",
  "3f4555ac-eaf3-4066-a1ba-20bb1ec1c0b3"
]

ヘッダーファイルの読込

ヘッダーファイルの仕様はこちら

defmodule Coordinate do
  defstruct latitude: 0.0, longitude: 0.0
end

defmodule BandInfo do
  defstruct gain: 0.0, offset: 0.0
end

defmodule Affine do
  defstruct a: 0.0, b: 0.0, c: 0.0, d: 0.0
end

defmodule Conversion do
  defstruct x: 0.0, y: 0.0
end
defmodule HeaderInfo do
  defstruct blue_band: %BandInfo{},
            green_band: %BandInfo{},
            red_band: %BandInfo{},
            nir_band: %BandInfo{},
            center: %Coordinate{},
            left_top: %Coordinate{},
            right_top: %Coordinate{},
            left_bottom: %Coordinate{},
            right_bottom: %Coordinate{},
            affine: %Affine{},
            conversion: %Conversion{},
            degree: 0.0,
            map_degree: 0.0,
            datetime: nil,
            product_id: ""

  def get_string(info, start, value) do
    info
    |> String.slice(start, value)
    |> String.trim()
  end

  def get_value(info, start, value) do
    info
    |> get_string(start, value)
    |> String.to_float()
  end

  def read(hdr_file_path) do
    info = File.read!(hdr_file_path)

    %HeaderInfo{
      # 青色光バンド
      blue_band: %BandInfo{
        gain: get_value(info, 1721, 8),
        offset: get_value(info, 1729, 8)
      },
      # 緑色光バンド
      green_band: %BandInfo{
        gain: get_value(info, 1737, 8),
        offset: get_value(info, 1745, 8)
      },
      # 赤色光バンド
      red_band: %BandInfo{
        gain: get_value(info, 1752, 8),
        offset: get_value(info, 1760, 8)
      },
      # 近赤外線バンド
      nir_band: %BandInfo{
        gain: get_value(info, 1768, 8),
        offset: get_value(info, 1776, 8)
      },
      # 画像中央
      center: %Coordinate{
        latitude: get_value(info, 248, 16),
        longitude: get_value(info, 264, 16)
      },
      # 画像左上
      left_top: %Coordinate{
        latitude: get_value(info, 376, 16),
        longitude: get_value(info, 392, 16)
      },
      # 画像右上
      right_top: %Coordinate{
        latitude: get_value(info, 408, 16),
        longitude: get_value(info, 424, 16)
      },
      # 画像左下
      left_bottom: %Coordinate{
        latitude: get_value(info, 440, 16),
        longitude: get_value(info, 456, 16)
      },
      # 画像右下
      right_bottom: %Coordinate{
        latitude: get_value(info, 472, 16),
        longitude: get_value(info, 488, 16)
      },
      affine: %Affine{
        a: get_value(info, 1224, 16),
        b: get_value(info, 1240, 16),
        c: get_value(info, 1256, 16),
        d: get_value(info, 1272, 16)
      },
      conversion: %Conversion{
        x: get_value(info, 1208, 8),
        y: get_value(info, 1216, 8)
      },
      degree: get_value(info, 760, 16),
      map_degree: get_value(info, 921, 16),
      datetime:
        info
        |> get_string(192, 24)
        |> then(fn str ->
          String.slice(str, 0, 4) <>
            "-" <>
            String.slice(str, 4, 2) <>
            "-" <>
            String.slice(str, 6, 2) <>
            "T" <>
            String.slice(str, 8, 2) <>
            ":" <>
            String.slice(str, 10, 2) <>
            ":" <> String.slice(str, 12, 2)
        end)
        |> NaiveDateTime.from_iso8601!(),
      product_id: get_string(info, 128, 16)
    }
  end
end

NDVIの算出

defmodule NDVI do
  def read_header(file_path_list) do
    file_path_list
    |> Enum.find(fn file -> Path.extname(file) == ".txt" end)
    |> HeaderInfo.read()
  end

  def get_band_tensor(file_path_list, prefix) do
    file_path_list
    |> Enum.find(fn file ->
      file
      |> Path.basename()
      |> String.starts_with?(prefix)
    end)
    |> Evision.imread(flags: Evision.Constant.cv_IMREAD_GRAYSCALE())
    |> Evision.Mat.to_nx(EXLA.Backend)
  end

  def get_lat_lon(header_info) do
    ndvi_longitudes = [
      header_info.left_top.longitude,
      header_info.right_top.longitude,
      header_info.left_bottom.longitude,
      header_info.right_bottom.longitude
    ]

    ndvi_latitudes = [
      header_info.left_top.latitude,
      header_info.right_top.latitude,
      header_info.left_bottom.latitude,
      header_info.right_bottom.latitude
    ]

    ndvi_min_longitude = Enum.min(ndvi_longitudes)
    ndvi_max_longitude = Enum.max(ndvi_longitudes)
    ndvi_min_latitude = Enum.min(ndvi_latitudes)
    ndvi_max_latitude = Enum.max(ndvi_latitudes)

    {ndvi_min_longitude, ndvi_max_longitude, ndvi_min_latitude, ndvi_max_latitude}
  end

  def wrap_rotate(tensor, degree) do
    {src_height, src_width} = Nx.shape(tensor)

    affine =
      {src_width / 2, src_height / 2}
      |> Evision.getRotationMatrix2D(degree, 1)
      |> Evision.Mat.to_nx(EXLA.Backend)

    cos = Nx.abs(affine[[0, 0]])
    sin = Nx.abs(affine[[0, 1]])

    dst_width =
      Nx.add(Nx.multiply(src_height, sin), Nx.multiply(src_width, cos))
      |> Nx.to_number()
      |> trunc()

    dst_height =
      Nx.add(Nx.multiply(src_height, cos), Nx.multiply(src_width, sin))
      |> Nx.to_number()
      |> trunc()

    bias =
      Nx.tensor([
        [0, 0, (dst_width - src_width) / 2],
        [0, 0, (dst_height - src_height) / 2]
      ])

    new_affine = Nx.add(affine, bias)

    Evision.warpAffine(tensor, new_affine, {dst_width, dst_height})
  end

  def correct(ndvi_tensor, header_info) do
    {ndvi_min_longitude, ndvi_max_longitude, _, _} = get_lat_lon(header_info)

    rotated_mat = wrap_rotate(ndvi_tensor, -header_info.degree)

    diff_longitude =
      header_info.left_top.longitude - header_info.right_top.longitude -
        (header_info.left_bottom.longitude - header_info.right_bottom.longitude)

    {ndvi_height, ndvi_width} = rotated_mat.shape

    pix_per_longitude = ndvi_width / (ndvi_max_longitude - ndvi_min_longitude)

    diff_x = trunc(diff_longitude / 2 * pix_per_longitude)

    affine =
      [
        [1, 0, diff_x],
        [0, 1, 0]
      ]
      |> Nx.tensor()
      |> Nx.as_type(:f32)

    rotated_mat
    |> Evision.warpAffine(affine, {ndvi_width, ndvi_height})
    |> Evision.Mat.to_nx(EXLA.Backend)
  end

  def calc(file_path_list) do
    header_info = read_header(file_path_list)

    red_tensor =
      file_path_list
      |> get_band_tensor("IMG-03")
      |> Nx.multiply(header_info.red_band.gain)
      |> Nx.add(header_info.red_band.offset)

    nir_tensor =
      file_path_list
      |> get_band_tensor("IMG-04")
      |> Nx.multiply(header_info.nir_band.gain)
      |> Nx.add(header_info.nir_band.offset)

    ndvi_tensor =
      Nx.select(
        Nx.multiply(
          Nx.not_equal(red_tensor, 0),
          Nx.not_equal(nir_tensor, 0)
        ),
        Nx.divide(
          Nx.subtract(nir_tensor, red_tensor),
          Nx.add(nir_tensor, red_tensor)
        ),
        0
      )
      |> correct(header_info)

    {header_info, ndvi_tensor}
  end

  def to_heatmap(ndvi_tensor) do
    ndvi_tensor
    |> Nx.multiply(128)
    |> Nx.add(128)
    |> Nx.as_type(:u8)
    |> then(&amp;[src: &amp;1, colormap: Evision.Constant.cv_COLORMAP_WINTER()])
    |> Evision.applyColorMap()
  end
end
ndvi_list =
  scene_id_list
  |> Enum.map(fn scene_id ->
    "/tmp/#{scene_id}"
    |> File.ls!()
    |> Enum.map(fn filename -> Path.join(["/tmp", scene_id, filename]) end)
    |> NDVI.calc()
  end)
{header_info, ndvi_tensor} = Enum.at(ndvi_list, 0)

ndvi_tensor
|> NDVI.to_heatmap()
|> Evision.resize({640, 640})

筆ポリゴンデータを用意する

農林水産省の筆ポリゴンデータをダウンロードする

※筆の読みは「ふで」

出典: 「筆ポリゴンデータ(2022年度公開)」(農林水産省)()を加工して作成

json_file = "/tmp/2022_023612.json"
geojson_data =
  json_file
  |> File.read!()
  |> Jason.decode!()
  |> Geo.JSON.decode!()
# 地図に表示する中心座標を求める
longitudes =
  geojson_data.geometries
  |> Enum.map(&amp; &amp;1.coordinates)
  |> List.flatten()
  |> Enum.map(&amp;elem(&amp;1, 0))

latitudes =
  geojson_data.geometries
  |> Enum.map(&amp; &amp;1.coordinates)
  |> List.flatten()
  |> Enum.map(&amp;elem(&amp;1, 1))

center = {
  (Enum.min(longitudes) + Enum.max(longitudes)) / 2,
  (Enum.min(latitudes) + Enum.max(latitudes)) / 2
}

すべての農地を表示する

city_map =
  MapLibre.new(center: center, zoom: 11, style: :terrain)
  |> MapLibre.add_geo_source("geojson", geojson_data)
  |> MapLibre.add_layer(id: "line", source: "geojson", type: :line)

田んぼだけを対象にする

fields_geojson_data =
  geojson_data.geometries
  # 田んぼを指定
  |> Enum.filter(&amp;(&amp;1.properties["land_type"] == 100))
  |> then(fn geometries ->
    %Geo.GeometryCollection{geometries: geometries}
  end)

fields_map =
  MapLibre.new(center: center, zoom: 11, style: :terrain)
  |> MapLibre.add_geo_source("geojson", fields_geojson_data)
  |> MapLibre.add_layer(id: "line", source: "geojson", type: :line)

マスク画像による切り抜き

# 全田んぼを含む領域の緯度経度の最大最小
fields_coordinates =
  fields_geojson_data.geometries
  |> Enum.map(&amp; &amp;1.coordinates)
  |> List.flatten()

fields_longitudes = Enum.map(fields_coordinates, &amp;elem(&amp;1, 0))
fields_latitudes = Enum.map(fields_coordinates, &amp;elem(&amp;1, 1))

fields_min_longitude = Enum.min(fields_longitudes)
fields_max_longitude = Enum.max(fields_longitudes)
fields_min_latitude = Enum.min(fields_latitudes)
fields_max_latitude = Enum.max(fields_latitudes)

{fields_min_longitude, fields_max_longitude, fields_min_latitude, fields_max_latitude}
# NDVI 画像のサイズ
{ndvi_height, ndvi_width} = Nx.shape(ndvi_tensor)
# NDVI 画像の緯度経度の最大最小
{ndvi_min_longitude, ndvi_max_longitude, ndvi_min_latitude, ndvi_max_latitude} =
  NDVI.get_lat_lon(header_info)
# 緯度経度あたりのピクセル数
{pix_per_longitude, pix_per_latitude} = {
  ndvi_width / (ndvi_max_longitude - ndvi_min_longitude),
  ndvi_height / (ndvi_max_latitude - ndvi_min_latitude)
}
# 最大最小の差から全田んぼを含む領域のサイズを求める
fields_width = trunc((fields_max_longitude - fields_min_longitude) * pix_per_longitude)
fields_height = trunc((fields_max_latitude - fields_min_latitude) * pix_per_latitude)

{fields_width, fields_height}
# NDVI 画像内での相対的な位置を求める
fields_lft_top_x = trunc((fields_min_longitude - ndvi_min_longitude) * pix_per_longitude)
fields_lft_top_y = trunc((ndvi_max_latitude - fields_max_latitude) * pix_per_latitude)

{fields_lft_top_x, fields_lft_top_y}
# NDVI 画像から全田んぼを含む領域を切り抜く
city_tensor =
  ndvi_tensor[
    [
      fields_lft_top_y..(fields_lft_top_y + fields_height - 1),
      fields_lft_top_x..(fields_lft_top_x + fields_width - 1)
    ]
  ]

city_tensor
|> NDVI.to_heatmap()
# 田んぼの各ポリゴンについて、緯度経度の最小から最大をピクセル数の0から幅・高さにスケールする
normalized_points =
  fields_geojson_data.geometries
  |> Enum.map(&amp; &amp;1.coordinates)
  |> Enum.map(fn coordinate ->
    coordinate
    |> Enum.at(0)
    |> Enum.map(fn {x, y} ->
      [
        trunc((x - fields_min_longitude) * pix_per_longitude),
        # 縦方向は緯度が北緯の場合逆転するため、高さから引く
        trunc(fields_height - (y - fields_min_latitude) * pix_per_latitude)
      ]
    end)
    |> Nx.tensor(type: :s32)
  end)
# 空画像を用意する
empty_mat =
  [0, 0, 0, 255]
  |> Nx.tensor(type: :u8)
  |> Nx.tile([fields_height, fields_width, 1])
  |> Evision.Mat.from_nx_2d()
# NDVI 画像にポリゴンを重ねる
empty_mat
|> Evision.fillPoly(normalized_points, {1})
|> Evision.Mat.to_nx(EXLA.Backend)
|> Nx.slice_along_axis(3, 1, axis: 2)
|> Nx.tile([3])
|> Nx.select(0, city_tensor |> NDVI.to_heatmap() |> Evision.Mat.to_nx(EXLA.Backend))
|> Nx.as_type(:u8)
|> Evision.Mat.from_nx_2d()

田んぼ毎の平均NDVI算出

fileds_mean_ndvi_tensor =
  normalized_points
  |> Enum.map(fn field_points ->
    empty_mat
    |> Evision.fillPoly([field_points], {1})
    |> Evision.Mat.to_nx(EXLA.Backend)
    |> Nx.slice_along_axis(3, 1, axis: 2)
    |> Nx.squeeze()
    # 田んぼ内だけで平均する
    |> Nx.select(0, 1)
    |> then(&amp;Nx.weighted_mean(city_tensor, &amp;1))
    |> Nx.new_axis(0)
  end)
  |> Nx.concatenate()

NDVI の上位5つと下位5つについて、田んぼの NDVI を可視化する

city_map =
  city_tensor
  |> NDVI.to_heatmap()
  |> Evision.Mat.to_nx(EXLA.Backend)

# NDVI の高い順にインデックスを取得
ordered = Nx.argsort(fileds_mean_ndvi_tensor, direction: :desc)

# 上位5つと下位5つを取得
top_and_worst =
  [ordered[0..4], ordered[-5..-1]]
  |> Nx.concatenate()
  |> Nx.to_flat_list()

top_and_worst
|> Enum.map(fn index ->
  field_points = Enum.at(normalized_points, index)

  [min_x, min_y] = field_points |> Nx.reduce_min(axes: [0]) |> Nx.to_flat_list()
  [max_x, max_y] = field_points |> Nx.reduce_max(axes: [0]) |> Nx.to_flat_list()

  empty_mat
  |> Evision.fillPoly([field_points], {1})
  |> Evision.Mat.to_nx(EXLA.Backend)
  |> Nx.slice_along_axis(3, 1, axis: 2)
  |> Nx.tile([3])
  |> Nx.select(0, city_map)
  |> then(&amp; &amp;1[[min_y..max_y, min_x..max_x]])
  |> Nx.as_type(:u8)
  |> Evision.Mat.from_nx_2d()
  |> Evision.resize({(max_x - min_x + 1) * 100, (max_y - min_y + 1) * 100})
  |> Evision.Mat.to_nx(EXLA.Backend)
  |> Nx.reverse(axes: [2])
  |> Kino.Image.new()
end)
|> Kino.Layout.grid(columns: 5)

時系列による推移

defmodule FieldNDVI do
  def get_fields_lat_lon(fields_geojson_data) do
    # 緯度経度の最大最小を求める
    fields_coordinates =
      fields_geojson_data.geometries
      |> Enum.map(&amp; &amp;1.coordinates)
      |> List.flatten()

    fields_longitudes = Enum.map(fields_coordinates, &amp;elem(&amp;1, 0))
    fields_latitudes = Enum.map(fields_coordinates, &amp;elem(&amp;1, 1))

    {
      Enum.min(fields_longitudes),
      Enum.max(fields_longitudes),
      Enum.min(fields_latitudes),
      Enum.max(fields_latitudes)
    }
  end

  def get_pix_per_lat_lon(ndvi_tensor, header_info) do
    {ndvi_height, ndvi_width} = Nx.shape(ndvi_tensor)

    {ndvi_min_longitude, ndvi_max_longitude, ndvi_min_latitude, ndvi_max_latitude} =
      NDVI.get_lat_lon(header_info)

    {
      ndvi_width / (ndvi_max_longitude - ndvi_min_longitude),
      ndvi_height / (ndvi_max_latitude - ndvi_min_latitude)
    }
  end

  def get_city_tensor(ndvi_tensor, header_info, fields_geojson_data) do
    {
      fields_min_longitude,
      fields_max_longitude,
      fields_min_latitude,
      fields_max_latitude
    } = get_fields_lat_lon(fields_geojson_data)

    {ndvi_min_longitude, _, _, ndvi_max_latitude} = NDVI.get_lat_lon(header_info)

    {pix_per_longitude, pix_per_latitude} = get_pix_per_lat_lon(ndvi_tensor, header_info)

    {fields_width, fields_height} = {
      trunc((fields_max_longitude - fields_min_longitude) * pix_per_longitude),
      trunc((fields_max_latitude - fields_min_latitude) * pix_per_latitude)
    }

    {fields_lft_top_x, fields_lft_top_y} = {
      trunc((fields_min_longitude - ndvi_min_longitude) * pix_per_longitude),
      trunc((ndvi_max_latitude - fields_max_latitude) * pix_per_latitude)
    }

    ndvi_tensor[
      [
        fields_lft_top_y..(fields_lft_top_y + fields_height - 1),
        fields_lft_top_x..(fields_lft_top_x + fields_width - 1)
      ]
    ]
  end

  def get_normalized_points(ndvi_tensor, header_info, fields_geojson_data) do
    {
      fields_min_longitude,
      fields_max_longitude,
      fields_min_latitude,
      _
    } = get_fields_lat_lon(fields_geojson_data)

    {pix_per_longitude, pix_per_latitude} = get_pix_per_lat_lon(ndvi_tensor, header_info)

    fields_height = trunc((fields_max_longitude - fields_min_longitude) * pix_per_longitude)

    fields_geojson_data.geometries
    |> Enum.map(&amp; &amp;1.coordinates)
    |> Enum.map(fn coordinate ->
      coordinate
      |> Enum.at(0)
      |> Enum.map(fn {x, y} ->
        [
          trunc((x - fields_min_longitude) * pix_per_longitude),
          # 縦方向は緯度が北緯の場合逆転するため、高さから引く
          trunc(fields_height - (y - fields_min_latitude) * pix_per_latitude)
        ]
      end)
      |> Nx.tensor(type: :s32)
    end)
  end

  def get_field_mean_ndvi(field_points, city_tensor, empty_mat) do
    empty_mat
    |> Evision.fillPoly([field_points], {1})
    |> Evision.Mat.to_nx(EXLA.Backend)
    |> Nx.slice_along_axis(3, 1, axis: 2)
    |> Nx.squeeze()
    # マスク内だけで平均する
    |> Nx.select(0, 1)
    |> then(&amp;Nx.weighted_mean(city_tensor, &amp;1))
    |> Nx.new_axis(0)
  end

  def get_fields_mean_ndvi(ndvi_tensor, header_info, fields_geojson_data) do
    normalized_points = get_normalized_points(ndvi_tensor, header_info, fields_geojson_data)

    city_tensor = get_city_tensor(ndvi_tensor, header_info, fields_geojson_data)

    {fields_height, fields_width} = Nx.shape(city_tensor)

    # 空画像を用意する
    empty_mat =
      [0, 0, 0, 255]
      |> Nx.tensor(type: :u8)
      |> Nx.tile([fields_height, fields_width, 1])
      |> Evision.Mat.from_nx_2d()

    normalized_points
    |> Enum.map(&amp;get_field_mean_ndvi(&amp;1, city_tensor, empty_mat))
    |> Nx.concatenate()
  end
end
fields_mean_ndvi_tensor =
  ndvi_list
  |> Enum.map(fn {header_info, ndvi_tensor} ->
    IO.inspect(header_info.datetime)
    FieldNDVI.get_fields_mean_ndvi(ndvi_tensor, header_info, fields_geojson_data)
  end)
  |> Nx.stack()

田んぼ毎に時間経過に対するNDVIの標準偏差を計算する

  • 標準偏差が大きい = ばらつきが大きい = 季節に応じて植物が生えたり枯れたりしている = 耕地や落葉樹林
  • 標準偏差が小さい = ばらつきが小さい = 植物が常にない、または常に生えた状態 = 休耕地や常緑樹林
fields_std_ndvi_tensor = Nx.standard_deviation(fields_mean_ndvi_tensor, axes: [0])
ordered = Nx.argsort(fields_std_ndvi_tensor, direction: :desc)
plot_ndvi = fn mean_ndvi_tensor, title ->
  plot_data =
    mean_ndvi_tensor
    |> Nx.to_flat_list()
    |> Enum.map(fn index ->
      ndvi_list
      |> Enum.with_index()
      |> Enum.map(fn {{header_info, _}, scene_index} ->
        %{
          datetime: header_info.datetime,
          index: index,
          ndvi: Nx.to_number(fields_mean_ndvi_tensor[[scene_index, index]])
        }
      end)
    end)
    |> List.flatten()

  VegaLite.new(width: 700, title: title)
  |> VegaLite.data_from_values(plot_data)
  |> VegaLite.mark(:line)
  |> VegaLite.encode_field(:x, "datetime", type: :temporal)
  |> VegaLite.encode_field(:y, "ndvi", type: :quantitative, scale: %{"domain" => [-1.0, 1.0]})
  |> VegaLite.encode_field(:color, "index", type: :nominal)
end

NDVI 標準偏差の上位5つと下位5つについて、田んぼの NDVI 推移をグラフ化する

[
  {ordered[[0..4]], "top"},
  {ordered[[-5..-1]], "worst"}
]
|> Enum.map(fn {tensor, title} -> plot_ndvi.(tensor, title) end)
|> Kino.Layout.grid()
display_field_ndvi = fn index_list, ndvi_tensor, header_info, fields_geojson_data ->
  normalized_points =
    FieldNDVI.get_normalized_points(ndvi_tensor, header_info, fields_geojson_data)

  city_tensor = FieldNDVI.get_city_tensor(ndvi_tensor, header_info, fields_geojson_data)

  city_map =
    city_tensor
    |> NDVI.to_heatmap()
    |> Evision.Mat.to_nx(EXLA.Backend)

  {fields_height, fields_width} = Nx.shape(city_tensor)

  # 空画像を用意する
  empty_mat =
    [0, 0, 0, 255]
    |> Nx.tensor(type: :u8)
    |> Nx.tile([fields_height, fields_width, 1])
    |> Evision.Mat.from_nx_2d()

  index_list
  |> Enum.map(fn index ->
    field_points = Enum.at(normalized_points, index)

    [min_x, min_y] = field_points |> Nx.reduce_min(axes: [0]) |> Nx.to_flat_list()
    [max_x, max_y] = field_points |> Nx.reduce_max(axes: [0]) |> Nx.to_flat_list()

    empty_mat
    |> Evision.fillPoly([field_points], {1})
    |> Evision.Mat.to_nx(EXLA.Backend)
    |> Nx.slice_along_axis(3, 1, axis: 2)
    |> Nx.tile([3])
    |> Nx.select(0, city_map)
    |> then(&amp; &amp;1[[min_y..max_y, min_x..max_x]])
    |> Nx.as_type(:u8)
    |> Evision.Mat.from_nx_2d()
    |> Evision.resize({(max_x - min_x + 1) * 100, (max_y - min_y + 1) * 100})
    |> Evision.Mat.to_nx(EXLA.Backend)
    |> Nx.reverse(axes: [2])
    |> Kino.Image.new()
  end)
  |> Kino.Layout.grid(columns: 5)
end

NDVI 標準偏差の上位5つと下位5つについて、田んぼの NDVI 推移を画像として可視化する

top_and_worst =
  [ordered[0..4], ordered[-5..-1]]
  |> Nx.concatenate()
  |> Nx.to_flat_list()

ndvi_list
|> Enum.map(fn {header_info, ndvi_tensor} ->
  date =
    header_info.datetime
    |> NaiveDateTime.to_iso8601()
    |> String.slice(0..9)

  display = display_field_ndvi.(top_and_worst, ndvi_tensor, header_info, fields_geojson_data)

  {date, display}
end)
|> Kino.Layout.tabs()