Machine Learning in Elixir (Ch 6+)
Mix.install(
[
{:axon, "~> 0.5"},
{:axon_onnx, github: "mortont/axon_onnx", override: true},
{:nx, "~> 0.5"},
{:polaris, "~> 0.1"},
{:explorer, "~> 0.5"},
{:kino, "~> 0.8"},
{:scholar, "~> 0.3.1"},
{:exla, "~> 0.5"},
{:benchee, github: "bencheeorg/benchee", override: true},
{:table_rex, "~> 3.1.1"},
{:scidata, "~> 0.1"},
{:stb_image, "~> 0.6"},
{:vega_lite, "~> 0.1"},
{:kino_vega_lite, "~> 0.1"}
],
config: [
nx: [
default_backend: {EXLA.Backend, client: :cuda},
default_defn_options: [compiler: EXLA, client: :cuda]
],
exla: [
clients: [
cuda: [platform: :cuda, memory_fraction: 0.25]
]
]
],
system_env: [
XLA_TARGET: "cuda120",
]
)
Setup v2
require Explorer.DataFrame, as: DF
alias VegaLite, as: Vl
Chapter 6
Neural network
defmodule NeuralNetwork do
import Nx.Defn
defn hidden(input, weight, bias) do
input
|> dense(weight, bias)
|> activation()
end
defn output(input, weight, bias) do
input
|> dense(weight, bias)
|> activation()
end
defn predict(input, w1, b1, w2, b2) do
input
|> hidden(w1, b1)
|> output(w2, b2)
end
defn dense(input, weight, bias) do
input
|> Nx.dot(weight)
|> Nx.add(bias)
end
defn activation(input) do
Nx.sigmoid(input)
end
end
key = Nx.Random.key(42)
{w1, new_key} = Nx.Random.uniform(key)
{b1, new_key} = Nx.Random.uniform(new_key)
{w2, new_key} = Nx.Random.uniform(new_key)
{b2, new_key} = Nx.Random.uniform(new_key)
{input, _new_key} = Nx.Random.uniform(new_key, shape: {})
input
|> NeuralNetwork.predict(w1, b2, w2, b2)
Axon
{images, labels} = Scidata.MNIST.download()
{image_data, image_type, image_shape} = images
{label_data, label_type, label_shape} = labels
images =
image_data
|> Nx.from_binary(image_type)
|> Nx.divide(255)
|> Nx.reshape({60000, :auto})
labels =
label_data
|> Nx.from_binary(label_type)
|> Nx.reshape(label_shape)
|> Nx.new_axis(-1)
|> Nx.equal(Nx.iota({1, 10}))
train_range = 0..49_999//1
test_range = 50_000..-1//1
train_images = images[train_range]
train_labels = labels[train_range]
test_images = images[test_range]
test_labels = labels[test_range]
batch_size = 64
train_data =
train_images
|> Nx.to_batched(batch_size)
|> Stream.zip(Nx.to_batched(train_labels, batch_size))
test_data =
test_images
|> Nx.to_batched(batch_size)
|> Stream.zip(Nx.to_batched(test_labels, batch_size))
Building the model with Axon
model =
Axon.input("images", shape: {nil, 784})
|> Axon.dense(128, activation: :relu)
|> Axon.dense(128, activation: :relu)
|> Axon.dense(10, activation: :softmax)
template = Nx.template({1, 784}, :f32)
Axon.Display.as_graph(model, template)
Axon.Display.as_table(model, template)
|> IO.puts()
IO.inspect(model, structs: false)
Training the model
trained_model_state =
model
|> Axon.Loop.trainer(:categorical_cross_entropy, :sgd)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(train_data, %{}, epochs: 10, compiler: EXLA)
Evaluating the model
model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_data, trained_model_state, compiler: EXLA)
Executing models with Axon
{test_batch, _} = Enum.at(test_data, 0)
test_image = test_batch[0]
test_image
|> Nx.reshape({28, 28})
|> Nx.to_heatmap()
{_, predict_fn} = Axon.build(model, compiler: EXLA)
probabilities =
test_image
|> Nx.new_axis(0)
|> then(&predict_fn.(trained_model_state, &1))
probabilities |> Nx.argmax()
Chapter 7
Creating a pipeline
defmodule CatsAndDogs do
def pipeline(paths, batch_size, target_height, target_width) do
paths
|> Enum.shuffle()
|> Task.async_stream(&parse_image/1)
|> Stream.filter(fn
{:ok, {%StbImage{}, _}} -> true
_ -> false
end)
|> Stream.map(&to_tensors(&1, target_height, target_width))
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn chunks ->
{img_chunk, label_chunk} = Enum.unzip(chunks)
{Nx.stack(img_chunk), Nx.stack(label_chunk)}
end)
end
def pipeline_with_aug(paths, batch_size, target_height, target_width) do
paths
|> Enum.shuffle()
|> Task.async_stream(&parse_image/1)
|> Stream.filter(fn
{:ok, {%StbImage{}, _}} -> true
_ -> false
end)
|> Stream.map(&to_tensors(&1, target_height, target_width))
|> Stream.map(&random_flip(&1, :height))
|> Stream.map(&random_flip(&1, :width))
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn chunks ->
{img_chunk, label_chunk} = Enum.unzip(chunks)
{Nx.stack(img_chunk), Nx.stack(label_chunk)}
end)
end
defp parse_image(path) do
base = Path.basename(path)
label = if String.contains?(base, "cat"), do: 0, else: 1
case StbImage.read_file(path) do
{:ok, img} -> {img, label}
_error -> :error
end
end
defp to_tensors({:ok, {img, label}}, target_height, target_width) do
img_tensor =
img
|> StbImage.resize(target_height, target_width)
|> StbImage.to_nx()
|> Nx.divide(255)
label_tensor = Nx.tensor([label])
{img_tensor, label_tensor}
end
defp random_flip({image, label}, axis) do
if :rand.uniform() < 0.5 do
{Nx.reverse(image, axes: [axis]), label}
else
{image, label}
end
end
end
batch_size = 128
target_height = 96
target_width = 96
{test_paths, train_paths} =
Path.wildcard("train/cats_dogs/*.jpg")
|> Enum.shuffle()
|> Enum.split(1000)
{test_paths, val_paths} = test_paths |> Enum.split(750)
train_pipeline = CatsAndDogs.pipeline_with_aug(
train_paths, batch_size, target_height, target_width
)
val_pipeline = CatsAndDogs.pipeline(
val_paths, batch_size, target_height, target_width
)
test_pipeline = CatsAndDogs.pipeline(
test_paths, batch_size, target_height, target_width
)
Enum.take(train_pipeline, 1)
Training the MLP
mlp_model =
Axon.input("images", shape: {nil, target_height, target_width, 3})
|> Axon.flatten()
|> Axon.dense(256, activation: :relu)
|> Axon.dense(128, activation: :relu)
|> Axon.dense(1, activation: :sigmoid)
mlp_trained_model_state =
mlp_model
|> Axon.Loop.trainer(:binary_cross_entropy, :adam)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(train_pipeline, %{}, epochs: 5, compiler: EXLA)
mlp_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, mlp_trained_model_state, compiler: EXLA)
Convolutional Networks
path = "train/cats_dogs/dog.5.jpg"
img =
path
|> StbImage.read_file!()
|> StbImage.to_nx()
|> Nx.transpose(axes: [:channels, :height, :width])
|> Nx.new_axis(0)
kernel = Nx.tensor([
[-1, 0, 1],
[-1, 0, 1],
[-1, 0, 1]
])
kernel = kernel |> Nx.reshape({1, 1, 3, 3}) |> Nx.broadcast({3, 3, 3, 3})
img
|> Nx.conv(kernel)
|> Nx.as_type({:u, 8})
|> Nx.squeeze(axes: [0])
|> Nx.transpose(axes: [:height, :width, :channels])
|> Kino.Image.new()
Implementing CNNs
cnn_model =
Axon.input("images", shape: {nil, 96, 96, 3})
|> Axon.conv(32, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.batch_norm()
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
|> Axon.conv(64, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.batch_norm()
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
|> Axon.conv(128, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
|> Axon.flatten()
|> Axon.dense(128, activation: :relu)
|> Axon.dropout(rate: 0.5)
|> Axon.dense(1, activation: :sigmoid)
template = Nx.template({1, 96, 96, 3}, :f32)
Axon.Display.as_graph(cnn_model, template)
cnn_trained_model_state =
cnn_model
|> Axon.Loop.trainer(:binary_cross_entropy, Polaris.Optimizers.adam(learning_rate: 1.0e-3))
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.validate(cnn_model, val_pipeline)
|> Axon.Loop.early_stop("validation_loss", mode: :min)
|> Axon.Loop.run(train_pipeline, %{}, epochs: 100, compiler: EXLA)
cnn_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, cnn_trained_model_state, compiler: EXLA)
Chapter 8
defmodule CatsAndDogs do
def pipeline(paths, batch_size, target_height, target_width) do
paths
|> Enum.shuffle()
|> Task.async_stream(&parse_image/1)
|> Stream.filter(fn
{:ok, {%StbImage{}, _}} -> true
_ -> false
end)
|> Stream.map(&to_tensors(&1, target_height, target_width))
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn chunks ->
{img_chunk, label_chunk} = Enum.unzip(chunks)
{Nx.stack(img_chunk), Nx.stack(label_chunk)}
end)
end
def pipeline_with_augs(paths, batch_size, target_height, target_width) do
paths
|> Enum.shuffle()
|> Task.async_stream(&parse_image/1)
|> Stream.filter(fn
{:ok, {%StbImage{}, _}} -> true
_ -> false
end)
|> Stream.map(&to_tensors(&1, target_height, target_width))
|> Stream.map(&random_flip(&1, :height))
|> Stream.map(&random_flip(&1, :width))
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn chunks ->
{img_chunk, label_chunk} = Enum.unzip(chunks)
{Nx.stack(img_chunk), Nx.stack(label_chunk)}
end)
end
defp random_flip({image, label}, axis) do
if :rand.uniform() < 0.5 do
{Nx.reverse(image, axes: [axis]), label}
else
{image, label}
end
end
defp parse_image(path) do
base = Path.basename(path)
label = if String.contains?(base, "cat"), do: 0, else: 1
case StbImage.read_file(path) do
{:ok, img} -> {img, label}
_error -> :error
end
end
defp to_tensors({:ok, {img, label}}, target_height, target_width) do
img_tensor =
img
|> StbImage.resize(target_height, target_width)
|> StbImage.to_nx()
|> Nx.divide(255)
|> Nx.transpose(axes: [:channels, :height, :width])
label_tensor = Nx.tensor([label])
{img_tensor, label_tensor}
end
end
batch_size = 32
target_height = 160
target_width = 160
{test_paths, train_paths} =
Path.wildcard("train/cats_dogs/*.jpg")
|> Enum.shuffle()
|> Enum.split(1000)
{test_paths, val_paths} = test_paths |> Enum.split(750)
train_pipeline =
CatsAndDogs.pipeline_with_augs(
train_paths,
batch_size,
target_height,
target_width
)
test_pipeline =
CatsAndDogs.pipeline(
test_paths,
batch_size,
target_height,
target_width
)
val_pipeline =
CatsAndDogs.pipeline(
val_paths,
batch_size,
target_height,
target_width
)
Enum.take(train_pipeline, 1)
{cnn_base, cnn_base_params} = AxonOnnx.import(
"train/mobilenetv2-7.onnx", batch_size: batch_size
)
input_template = Nx.template({1, 3, target_height, target_width}, :f32)
Axon.Display.as_graph(cnn_base, input_template)
### Extract the original classification head
{_popped, cnn_base} = cnn_base |> Axon.pop_node()
{_popped, cnn_base} = cnn_base |> Axon.pop_node()
Wrap convolutional base into its own namespace
cnn_base = cnn_base |> Axon.namespace("feature_extractor")
Freeze the convolutional base so that we don’t use it for training
cnn_base = cnn_base |> Axon.freeze()
Flatten the features or use a global pooling layer. Also add some regularization via dropout
model =
cnn_base
|> Axon.global_avg_pool(channels: :first)
|> Axon.dropout(rate: 0.2)
|> Axon.dense(1)
Create training loop
loss = &Axon.Losses.binary_cross_entropy(&1, &2,
reduction: :mean,
from_logits: true
)
optimizer = Polaris.Optimizers.adam(learning_rate: 1.0e-4)
trained_model_state =
model
|> Axon.Loop.trainer(loss, optimizer)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.validate(model, val_pipeline)
|> Axon.Loop.early_stop("validation_loss", mode: :min, patience: 5)
|> Axon.Loop.run(
train_pipeline,
%{"feature_extractor" => cnn_base_params},
epochs: 1,
compiler: EXLA
)
eval_model = model |> Axon.sigmoid()
eval_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, trained_model_state, compiler: EXLA)
Fine-tuning
model = model |> Axon.unfreeze(up: 50)
loss = &Axon.Losses.binary_cross_entropy(&1, &2,
reduction: :mean,
from_logits: true)
optimizer = Polaris.Optimizers.rmsprop(learning_rate: 1.0e-5)
trained_model_state =
model
|> Axon.Loop.trainer(loss, optimizer)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.validate(model, val_pipeline)
|> Axon.Loop.early_stop("validation_loss", mode: :min, patience: 5)
|> Axon.Loop.run(
train_pipeline,
trained_model_state,
epochs: 1,
compiler: EXLA
)
eval_model = model |> Axon.sigmoid()
eval_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, trained_model_state, compiler: EXLA)