Powered by AppSignal & Oban Pro
Would you like to see your link here? Contact us

GorillaStream: Streaming & Processing Patterns

02_streaming_processing_patterns.livemd

GorillaStream: Streaming & Processing Patterns

Mix.install([
  {:gorilla_stream, "~> 1.1"},
  {:jason, "~> 1.4"}
])

Introduction

This notebook explores advanced streaming and processing patterns with GorillaStream. You’ll learn how to handle:

  • Real-time streaming (individual points)
  • Chunked processing (large datasets)
  • Memory-efficient file processing
  • Adaptive processing (switching between streaming and chunking)
  • IoT data pipeline patterns

1. Real-time Streaming (Individual Points)

Perfect for processing sensor data as it arrives, one point at a time:

defmodule SensorStreaming do
  def start_sensor_stream(sensor_id, duration_seconds \\ 30) do
    IO.puts("Starting real-time sensor stream for #{sensor_id}...")
    
    # Simulate real-time sensor data stream
    Stream.unfold({DateTime.utc_now(), 0}, fn {start_time, count} ->
      if count < duration_seconds do
        current_time = DateTime.add(start_time, count, :second)
        timestamp = DateTime.to_unix(current_time)
        
        # Simulate sensor reading with some realistic variation
        base_value = 22.5
        variation = :math.sin(count / 10) * 2 + (:rand.uniform() - 0.5) * 0.5
        value = base_value + variation
        
        data_point = {timestamp, Float.round(value, 2)}
        {data_point, {start_time, count + 1}}
      else
        nil
      end
    end)
    |> Stream.map(&amp;compress_point/1)
    |> Stream.each(&amp;store_compressed_point/1)
    |> Enum.to_list()  # Force evaluation for demo
  end

  defp compress_point(data_point) do
    # Compress single point as it streams in
    case GorillaStream.compress([data_point]) do
      {:ok, compressed} ->
        {timestamp, value} = data_point
        compression_ratio = 16 / byte_size(compressed)  # Approximate original size
        
        %{
          timestamp: timestamp,
          value: value,
          compressed: compressed,
          compressed_size: byte_size(compressed),
          compression_ratio: Float.round(compression_ratio, 2),
          status: :success
        }
        
      {:error, reason} ->
        %{
          data_point: data_point,
          error: reason,
          status: :error
        }
    end
  end
  
  defp store_compressed_point(result) do
    case result.status do
      :success ->
        IO.puts("✓ Streamed point #{result.timestamp}:#{result.value} -> #{result.compressed_size}B (#{result.compression_ratio}:1)")
        
      :error ->
        IO.puts("✗ Failed to compress point #{inspect(result.data_point)}: #{result.error}")
    end
    
    result
  end
end

# Run the real-time streaming demo
streaming_results = SensorStreaming.start_sensor_stream("sensor_001", 10)

# Analyze streaming results
successful_streams = Enum.filter(streaming_results, &amp;(&amp;1.status == :success))
failed_streams = Enum.filter(streaming_results, &amp;(&amp;1.status == :error))

IO.puts("\n--- Streaming Summary ---")
IO.puts("Total points processed: #{length(streaming_results)}")
IO.puts("Successful compressions: #{length(successful_streams)}")
IO.puts("Failed compressions: #{length(failed_streams)}")

if length(successful_streams) > 0 do
  avg_compression_ratio = 
    successful_streams
    |> Enum.map(&amp; &amp;1.compression_ratio)
    |> Enum.sum()
    |> Kernel./(length(successful_streams))
    
  avg_size = 
    successful_streams
    |> Enum.map(&amp; &amp;1.compressed_size)
    |> Enum.sum()
    |> Kernel./(length(successful_streams))
    
  IO.puts("Average compression ratio: #{Float.round(avg_compression_ratio, 2)}:1")
  IO.puts("Average compressed size: #{Float.round(avg_size, 1)} bytes")
end

2. Chunked Processing (Large Datasets)

Efficient for processing large datasets by grouping points into chunks:

alias GorillaStream.Stream, as: GStream

defmodule ChunkedProcessor do
  def process_large_dataset(num_points, chunk_size \\ 10_000) do
    IO.puts("Processing #{num_points} points in chunks of #{chunk_size}...")
    
    # Generate large dataset as a stream
    large_dataset = Stream.unfold(1609459200, fn timestamp ->
      if timestamp < 1609459200 + num_points * 60 do
        # Simulate realistic sensor data with patterns
        point_index = div(timestamp - 1609459200, 60)
        base_temp = 20.0 + 5 * :math.sin(point_index / 144)  # Daily cycle
        noise = (:rand.uniform() - 0.5) * 1.0
        value = base_temp + noise
        
        point = {timestamp, Float.round(value, 2)}
        {point, timestamp + 60}  # Every minute
      else
        nil
      end
    end)

    # Process in chunks using GorillaStream's streaming API
    start_time = :os.system_time(:microsecond)
    
    compressed_chunks =
      large_dataset
      |> Stream.chunk_every(chunk_size)
      |> Stream.with_index()
      |> Stream.map(fn {chunk, index} ->
        chunk_start = :os.system_time(:microsecond)
        
        case GorillaStream.compress(chunk) do
          {:ok, compressed} ->
            chunk_time = :os.system_time(:microsecond) - chunk_start
            
            # Calculate chunk statistics
            original_size = length(chunk) * 16
            compression_ratio = original_size / byte_size(compressed)
            points_per_sec = length(chunk) / (chunk_time / 1_000_000)
            
            {first_timestamp, _} = List.first(chunk)
            {last_timestamp, _} = List.last(chunk)
            
            {
              :ok,
              compressed,
              %{
                chunk_index: index,
                original_points: length(chunk),
                compressed_size: byte_size(compressed),
                compression_ratio: Float.round(compression_ratio, 2),
                processing_time_us: chunk_time,
                points_per_second: Float.round(points_per_sec, 0),
                timestamp_range: {first_timestamp, last_timestamp}
              }
            }
            
          {:error, reason} ->
            {:error, reason, %{chunk_index: index, points: length(chunk)}}
        end
      end)
      |> Enum.to_list()

    total_time = :os.system_time(:microsecond) - start_time
    
    # Analyze results
    successful_chunks = Enum.filter(compressed_chunks, fn
      {:ok, _, _} -> true
      _ -> false
    end)
    
    total_points_processed = 
      successful_chunks
      |> Enum.map(fn {:ok, _, metadata} -> metadata.original_points end)
      |> Enum.sum()
    
    total_compressed_size = 
      successful_chunks
      |> Enum.map(fn {:ok, compressed, _} -> byte_size(compressed) end)
      |> Enum.sum()
      
    overall_compression_ratio = (total_points_processed * 16) / total_compressed_size
    overall_throughput = total_points_processed / (total_time / 1_000_000)
    
    IO.puts("\n--- Chunked Processing Summary ---")
    IO.puts("Total chunks processed: #{length(compressed_chunks)}")
    IO.puts("Successful chunks: #{length(successful_chunks)}")
    IO.puts("Total points processed: #{total_points_processed}")
    IO.puts("Total compressed size: #{total_compressed_size} bytes")
    IO.puts("Overall compression ratio: #{Float.round(overall_compression_ratio, 2)}:1")
    IO.puts("Overall throughput: #{Float.round(overall_throughput, 0)} points/sec")
    IO.puts("Total processing time: #{Float.round(total_time / 1_000_000, 2)} seconds")
    
    # Display per-chunk details
    IO.puts("\n--- Per-Chunk Details ---")
    Enum.each(successful_chunks, fn {:ok, _, metadata} ->
      IO.puts("Chunk #{metadata.chunk_index}: #{metadata.original_points} pts -> #{metadata.compressed_size}B (#{metadata.compression_ratio}:1) @ #{metadata.points_per_second} pts/sec")
    end)
    
    compressed_chunks
  end
end

# Run chunked processing demo
chunked_results = ChunkedProcessor.process_large_dataset(50_000, 5_000)

3. Memory-Efficient Large File Processing

Process huge files without loading everything into memory:

defmodule LargeFileProcessor do
  def simulate_csv_processing(num_points, chunk_size \\ 50_000) do
    IO.puts("Simulating CSV file processing with #{num_points} points...")
    
    # Simulate reading from a large CSV file
    csv_stream = Stream.unfold(1, fn
      line_num when line_num <= num_points ->
        timestamp = 1609459200 + line_num * 60
        # Simulate different sensor types with different patterns
        sensor_type = rem(line_num, 3)
        value = case sensor_type do
          0 -> 20.0 + :math.sin(line_num / 100) * 5  # Temperature
          1 -> 50.0 + (:rand.uniform() - 0.5) * 10   # Humidity  
          2 -> 1013.25 + :math.sin(line_num / 200) * 20  # Pressure
        end
        
        csv_line = "#{line_num},#{timestamp},sensor_#{sensor_type},#{Float.round(value, 2)}\n"
        {csv_line, line_num + 1}
        
      _ -> nil
    end)
    
    # Process CSV stream without loading entire file into memory
    start_time = :os.system_time(:microsecond)
    
    processed_files = 
      csv_stream
      |> Stream.map(&amp;parse_csv_line/1)
      |> Stream.reject(&amp;is_nil/1)  # Filter invalid lines
      |> Stream.chunk_every(chunk_size)
      |> Stream.with_index()
      |> Stream.map(fn {chunk, index} ->
        # Compress each chunk and simulate saving to separate files
        case GorillaStream.compress(chunk) do
          {:ok, compressed} ->
            filename = "compressed_chunk_#{index}.gorilla"
            # In real scenario: File.write!(filename, compressed)
            
            original_size = length(chunk) * 16
            compression_ratio = original_size / byte_size(compressed)
            
            {
              :ok,
              %{
                filename: filename,
                chunk_index: index,
                points: length(chunk),
                compressed_size: byte_size(compressed),
                compression_ratio: Float.round(compression_ratio, 2)
              }
            }
            
          {:error, reason} ->
            {:error, reason, index}
        end
      end)
      |> Enum.to_list()
    
    processing_time = :os.system_time(:microsecond) - start_time
    
    # Simulate loading compressed chunks back
    successful_files = Enum.filter(processed_files, fn
      {:ok, _} -> true
      _ -> false
    end)
    
    IO.puts("\n--- File Processing Summary ---")
    IO.puts("Processing time: #{Float.round(processing_time / 1_000_000, 2)} seconds")
    IO.puts("Files created: #{length(successful_files)}")
    
    total_points = 
      successful_files
      |> Enum.map(fn {:ok, info} -> info.points end)
      |> Enum.sum()
      
    total_compressed = 
      successful_files
      |> Enum.map(fn {:ok, info} -> info.compressed_size end)
      |> Enum.sum()
    
    IO.puts("Total points processed: #{total_points}")
    IO.puts("Total compressed size: #{total_compressed} bytes")
    IO.puts("Processing rate: #{Float.round(total_points / (processing_time / 1_000_000), 0)} points/sec")
    
    # Show file details
    IO.puts("\n--- Generated Files ---")
    Enum.each(successful_files, fn {:ok, info} ->
      IO.puts("#{info.filename}: #{info.points} points -> #{info.compressed_size}B (#{info.compression_ratio}:1)")
    end)
    
    processed_files
  end

  # Simulate decompressing and loading chunks back
  def simulate_load_compressed_chunks(processed_files) do
    IO.puts("\nSimulating loading compressed chunks back...")
    
    successful_files = Enum.filter(processed_files, fn
      {:ok, _} -> true
      _ -> false
    end)
    
    # In real scenario, we would read the files and decompress
    # For demo, we'll simulate the process
    loaded_points = 
      successful_files
      |> Stream.map(fn {:ok, info} ->
        # Simulate: compressed = File.read!(info.filename)
        # {:ok, data} = GorillaStream.decompress(compressed)
        # For demo, just return the point count
        info.points
      end)
      |> Enum.sum()
    
    IO.puts("Successfully loaded #{loaded_points} points from compressed files")
    loaded_points
  end

  defp parse_csv_line(csv_line) do
    try do
      [_line_num, timestamp_str, _sensor_type, value_str] = 
        csv_line
        |> String.trim()
        |> String.split(",")
      
      timestamp = String.to_integer(timestamp_str)
      value = String.to_float(value_str)
      
      {timestamp, value}
    rescue
      _ -> nil  # Skip invalid lines
    end
  end
end

# Run file processing simulation
file_results = LargeFileProcessor.simulate_csv_processing(100_000, 25_000)
_loaded_points = LargeFileProcessor.simulate_load_compressed_chunks(file_results)

4. Adaptive Processing (Streaming vs Chunking)

Automatically choose between streaming and chunking based on data rate:

defmodule AdaptiveProcessor do
  def start_adaptive_processing(data_source, max_points \\ 100) do
    IO.puts("Starting adaptive processing (streaming vs chunking)...")
    
    data_source
    |> Stream.take(max_points)  # Limit for demo
    |> Stream.chunk_while(
      %{buffer: [], last_time: System.monotonic_time(:millisecond), chunk_count: 0},
      &amp;chunk_or_stream/2,
      &amp;finalize_buffer/1
    )
    |> Stream.map(&amp;process_adaptively/1)
    |> Enum.to_list()  # Force evaluation
  end

  defp chunk_or_stream(point, %{buffer: buffer, last_time: last_time, chunk_count: count} = acc) do
    current_time = System.monotonic_time(:millisecond)
    time_diff = current_time - last_time
    new_buffer = [point | buffer]

    cond do
      # High data rate: use chunking for efficiency (buffer filled quickly)
      length(new_buffer) >= 10 ->
        IO.puts("🔄 High data rate detected, using chunking (#{length(new_buffer)} points)")
        {:cont, {:chunk, Enum.reverse(new_buffer)}, %{buffer: [], last_time: current_time, chunk_count: count + 1}}

      # Low data rate: stream individual points for low latency (timeout reached)
      time_diff > 2000 and length(new_buffer) > 0 ->
        IO.puts("⚡ Low data rate detected, streaming individual points (#{length(new_buffer)} points)")
        {:cont, {:stream, Enum.reverse(new_buffer)}, %{buffer: [], last_time: current_time, chunk_count: count + 1}}

      # Keep buffering
      true ->
        {:cont, %{buffer: new_buffer, last_time: last_time, chunk_count: count}}
    end
  end

  defp finalize_buffer(%{buffer: []}), do: {:cont, []}
  defp finalize_buffer(%{buffer: buffer}), do: {:cont, {:final, Enum.reverse(buffer)}, %{buffer: []}}

  defp process_adaptively({:stream, data_points}) do
    # Process individual points for low latency
    results = Enum.map(data_points, fn point ->
      case GorillaStream.compress([point]) do
        {:ok, compressed} ->
          {timestamp, value} = point
          %{
            mode: :streaming,
            timestamp: timestamp,
            value: value,
            compressed_size: byte_size(compressed),
            compression_ratio: Float.round(16 / byte_size(compressed), 2),
            status: :success
          }
        {:error, reason} ->
          %{mode: :streaming, point: point, error: reason, status: :error}
      end
    end)
    
    successful = Enum.count(results, &amp;(&amp;1.status == :success))
    IO.puts("   ✓ Streamed #{successful}/#{length(data_points)} points individually")
    {:stream, results}
  end

  defp process_adaptively({:chunk, data_points}) do
    # Process multiple points as a chunk for efficiency
    case GorillaStream.compress(data_points) do
      {:ok, compressed} ->
        original_size = length(data_points) * 16
        compression_ratio = original_size / byte_size(compressed)
        
        result = %{
          mode: :chunking,
          points: length(data_points),
          compressed_size: byte_size(compressed),
          compression_ratio: Float.round(compression_ratio, 2),
          status: :success
        }
        
        IO.puts("   ✓ Chunked #{length(data_points)} points -> #{byte_size(compressed)}B (#{result.compression_ratio}:1)")
        {:chunk, result}
        
      {:error, reason} ->
        IO.puts("   ✗ Chunk compression failed: #{reason}")
        {:chunk, %{mode: :chunking, points: length(data_points), error: reason, status: :error}}
    end
  end

  defp process_adaptively({:final, data_points}) do
    IO.puts("🏁 Processing final buffer with #{length(data_points)} points")
    process_adaptively({:stream, data_points})
  end
end

# Create a data source that varies in rate
variable_rate_data = Stream.unfold({1609459200, :slow}, fn
  {timestamp, :slow} when timestamp < 1609459200 + 20 * 60 ->
    # Slow rate: 1 point per call, simulating low-frequency sensor
    point = {timestamp, 20.0 + :rand.uniform() * 2}
    Process.sleep(100)  # Simulate slow data arrival
    {point, {timestamp + 60, if(timestamp > 1609459200 + 10 * 60, do: :fast, else: :slow)}}
    
  {timestamp, :fast} when timestamp < 1609459200 + 50 * 60 ->
    # Fast rate: simulate burst of data
    point = {timestamp, 20.0 + :rand.uniform() * 2}
    Process.sleep(10)  # Simulate fast data arrival
    {point, {timestamp + 60, if(timestamp > 1609459200 + 40 * 60, do: :slow, else: :fast)}}
    
  {timestamp, :slow} when timestamp < 1609459200 + 70 * 60 ->
    # Back to slow rate
    point = {timestamp, 20.0 + :rand.uniform() * 2}
    Process.sleep(100)
    {point, {timestamp + 60, :slow}}
    
  _ -> nil
end)

# Run adaptive processing
adaptive_results = AdaptiveProcessor.start_adaptive_processing(variable_rate_data, 50)

# Analyze adaptive processing results
stream_results = Enum.filter(adaptive_results, fn
  {:stream, _} -> true
  _ -> false
end)

chunk_results = Enum.filter(adaptive_results, fn
  {:chunk, _} -> true
  _ -> false
end)

IO.puts("\n--- Adaptive Processing Summary ---")
IO.puts("Streaming operations: #{length(stream_results)}")
IO.puts("Chunking operations: #{length(chunk_results)}")

stream_points = 
  stream_results
  |> Enum.flat_map(fn {:stream, results} -> results end)
  |> Enum.count(&amp;(&amp;1.status == :success))

chunk_points = 
  chunk_results
  |> Enum.map(fn {:chunk, result} -> if result.status == :success, do: result.points, else: 0 end)
  |> Enum.sum()

IO.puts("Points processed via streaming: #{stream_points}")
IO.puts("Points processed via chunking: #{chunk_points}")
IO.puts("Total points processed: #{stream_points + chunk_points}")

5. IoT Data Pipeline Simulation

Simulate a realistic IoT data pipeline with multiple sensors:

defmodule IoTDataPipeline do
  use GenServer

  def start_link(device_configs) do
    GenServer.start_link(__MODULE__, device_configs, name: __MODULE__)
  end

  def init(device_configs) do
    IO.puts("Starting IoT Data Pipeline with #{length(device_configs)} devices...")
    
    # Start simulated devices
    devices = Enum.map(device_configs, &amp;start_device/1)
    
    # Schedule periodic stats reporting
    :timer.send_interval(5000, self(), :report_stats)
    
    {:ok, %{
      devices: devices, 
      compression_stats: %{},
      total_points: 0,
      start_time: System.monotonic_time(:millisecond)
    }}
  end

  def handle_info({:device_data, device_id, {timestamp, value}}, state) do
    # Compress individual data points as they arrive from devices
    point = {timestamp, value}

    case GorillaStream.compress([point]) do
      {:ok, compressed} ->
        # Simulate sending compressed data to cloud/storage
        send_to_cloud(device_id, point, compressed)

        # Update compression stats
        stats = Map.get(state.compression_stats, device_id, %{points: 0, bytes: 0, errors: 0})
        new_stats = %{
          points: stats.points + 1,
          bytes: stats.bytes + byte_size(compressed),
          errors: stats.errors
        }

        new_state = %{
          state | 
          compression_stats: Map.put(state.compression_stats, device_id, new_stats),
          total_points: state.total_points + 1
        }
        
        {:noreply, new_state}

      {:error, reason} ->
        IO.puts("⚠️  IoT compression failed for #{device_id}: #{reason}")
        
        # Update error stats
        stats = Map.get(state.compression_stats, device_id, %{points: 0, bytes: 0, errors: 0})
        new_stats = %{stats | errors: stats.errors + 1}
        
        new_state = %{
          state | 
          compression_stats: Map.put(state.compression_stats, device_id, new_stats)
        }
        
        {:noreply, new_state}
    end
  end
  
  def handle_info(:report_stats, state) do
    current_time = System.monotonic_time(:millisecond)
    elapsed_seconds = (current_time - state.start_time) / 1000
    
    IO.puts("\n--- IoT Pipeline Stats (#{Float.round(elapsed_seconds, 1)}s elapsed) ---")
    IO.puts("Total points processed: #{state.total_points}")
    IO.puts("Processing rate: #{Float.round(state.total_points / elapsed_seconds, 1)} points/sec")
    
    Enum.each(state.compression_stats, fn {device_id, stats} ->
      avg_compression = if stats.points > 0, do: stats.bytes / stats.points, else: 0
      success_rate = if stats.points + stats.errors > 0 do
        stats.points / (stats.points + stats.errors) * 100
      else
        0
      end
      
      IO.puts("#{device_id}: #{stats.points} pts, #{Float.round(avg_compression, 1)}B avg, #{Float.round(success_rate, 1)}% success")
    end)
    
    {:noreply, state}
  end

  def handle_info(:stop_demo, state) do
    IO.puts("\n🛑 Stopping IoT Pipeline Demo")
    {:stop, :normal, state}
  end

  defp start_device({device_id, config}) do
    # Simulate device connection and start sending data
    spawn(fn -> simulate_device_data(device_id, config) end)
    {device_id, :connected}
  end

  defp simulate_device_data(device_id, config) do
    base_value = config[:base_value] || 20.0
    variation = config[:variation] || 2.0
    interval_ms = config[:interval_ms] || 1000
    
    Stream.iterate(0, &amp;(&amp;1 + 1))
    |> Stream.each(fn i ->
      timestamp = System.system_time(:second)
      
      # Generate realistic sensor data based on device type
      value = case config[:type] do
        :temperature ->
          base_value + variation * :math.sin(i / 10) + (:rand.uniform() - 0.5) * 0.5
        :humidity ->
          base_value + variation * :math.cos(i / 15) + (:rand.uniform() - 0.5) * 2
        :pressure ->
          base_value + variation * :math.sin(i / 20) + (:rand.uniform() - 0.5) * 1
        _ ->
          base_value + (:rand.uniform() - 0.5) * variation
      end
      
      # Send data to pipeline
      send(IoTDataPipeline, {:device_data, device_id, {timestamp, Float.round(value, 2)}})
      
      Process.sleep(interval_ms)
    end)
    |> Stream.take(30)  # Limit for demo
    |> Enum.to_list()
  end

  defp send_to_cloud(device_id, {timestamp, value}, compressed_data) do
    # Simulate sending to cloud storage/API
    # In reality: CloudAPI.send_compressed_point(...)
    compression_ratio = 16 / byte_size(compressed_data)
    
    if rem(System.system_time(:millisecond), 2000) < 100 do  # Occasional logging
      IO.puts("☁️  #{device_id}: #{timestamp}:#{value} -> #{byte_size(compressed_data)}B (#{Float.round(compression_ratio, 1)}:1)")
    end
  end
  
  def stop_demo() do
    send(IoTDataPipeline, :stop_demo)
  end
end

# Configure simulated IoT devices
device_configs = [
  {"temp_sensor_01", [type: :temperature, base_value: 22.5, variation: 3.0, interval_ms: 1000]},
  {"humidity_sensor_01", [type: :humidity, base_value: 65.0, variation: 15.0, interval_ms: 1500]},
  {"pressure_sensor_01", [type: :pressure, base_value: 1013.25, variation: 20.0, interval_ms: 2000]},
  {"temp_sensor_02", [type: :temperature, base_value: 18.0, variation: 4.0, interval_ms: 800]}
]

# Start the IoT pipeline
{:ok, _pid} = IoTDataPipeline.start_link(device_configs)

# Let it run for a while, then stop
Process.sleep(15_000)
IoTDataPipeline.stop_demo()

Summary

This notebook demonstrated advanced streaming and processing patterns with GorillaStream:

  1. Real-time Streaming: Processing individual sensor readings as they arrive
  2. Chunked Processing: Efficiently handling large datasets in manageable chunks
  3. Memory-Efficient File Processing: Processing huge files without memory overflow
  4. Adaptive Processing: Automatically switching between streaming and chunking based on data patterns
  5. IoT Data Pipeline: Realistic simulation of multiple sensors with real-time compression

Key Patterns:

  • Stream.unfold for generating infinite data streams
  • Stream.chunk_every for batching data into manageable sizes
  • Stream.chunk_while for adaptive buffering based on conditions
  • GenServer for stateful data pipeline management
  • Backpressure handling through controlled stream processing

Performance Insights:

  • Streaming excels for low-latency requirements with individual points
  • Chunking provides better throughput for bulk processing
  • Adaptive processing gives you the best of both approaches
  • Memory usage remains predictable across all patterns

Next Steps:

  • Explore GenStage integration for advanced backpressure control
  • Learn Broadway patterns for production-scale data processing
  • Consider Flow for CPU-intensive parallel processing scenarios