Chatper 09
Mix.install([
{:scidata, "~> 0.1"},
{:axon, "~> 0.5"},
{:exla, "~> 0.6"},
{:nx, "~> 0.6"},
{:table_rex, "~> 3.1.1"},
{:kino, "~> 0.7"}
])
Nx.default_backend(EXLA.Backend)
Section
data = Scidata.IMDBReviews.download()
{train_data, test_data} =
data.review
|> Enum.zip(data.sentiment)
|> Enum.shuffle()
|> Enum.split(23_000)
review = "I didn't like the movie. It was so bad; nobody should ever watch it."
review
|> String.downcase()
|> String.replace(~r/[\p{P}\p{S}]/, "")
|> String.split()
frequencies = %{
"diplomaswho" => 1,
"egyptologists" => 1,
"characther" => 1,
"nearlyempty" => 1,
"blobs" => 4,
"doubletwist" => 1,
"thingshe" => 1,
"loleralacartelort7890" => 1,
"placebo" => 1,
"betterif" => 1,
"smarttalk" => 1,
"sorcererin" => 1,
"celies" => 6,
"tenancier" => 1,
"ladies" => 284
}
num_tokens = 1024
tokens =
frequencies
|> Enum.sort_by(&elem(&1, 1), :desc)
|> Enum.take(num_tokens)
tokens =
frequencies
|> Enum.sort_by(&elem(&1, 1), :desc)
|> Enum.take(num_tokens)
|> Enum.with_index(fn {token, _}, i -> {token, i} end) |> Map.new()
review = "The Departed is Martin Scorsese's best work, and anybody who disagrees is wrong. This movie is amazing."
tokenize = fn review -> review
|> String.downcase()
|> String.replace(~r/[\p{P}\p{S}]/, "") |> String.split()
|> Enum.map(&Map.get(tokens, &1))
end
tokenize.(review)
review = "The Departed is Martin Scorsese's best work, and anybody who disagrees is wrong. This movie is amazing."
unknown_token = 0
tokens =
frequencies
|> Enum.sort_by(&elem(&1, 1), :desc)
|> Enum.take(num_tokens)
|> Enum.with_index(fn {token, _}, i -> {token, i + 1} end) |> Map.new()
tokenize = fn review -> review
|> String.downcase()
|> String.replace(~r/[\p{P}\p{S}]/, "")
|> String.split()
|> Enum.map(&Map.get(tokens, &1, unknown_token))
|> Nx.tensor()
end
tokenize.(review)
batch_size = 64
train_pipeline =
train_data
|> Stream.map(fn {review, label} ->
{tokenize.(review), Nx.tensor(label)}
end)
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn reviews_and_labels ->
{review, label} = Enum.unzip(reviews_and_labels)
{Nx.stack(review), Nx.stack(label) |> Nx.new_axis(-1)}
end)
test_pipeline =
test_data
|> Stream.map(fn {review, label} ->
{tokenize.(review), Nx.tensor(label)}
end)
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn reviews_and_labels ->
{review, label} = Enum.unzip(reviews_and_labels)
{Nx.stack(review), Nx.stack(label) |> Nx.new_axis(-1)}
end)
pad_token = 0
unknown_token = 1
max_seq_len = 64
tokens =
frequencies
|> Enum.sort_by(&elem(&1, 1), :desc)
|> Enum.take(num_tokens)
|> Enum.with_index(fn {token, _}, i -> {token, i + 2} end)
|> Map.new()
tokenize = fn review ->
review
|> String.downcase()
|> String.replace(~r/[\p{P}\p{S}]/, "")
|> String.split()
|> Enum.map(&Map.get(tokens, &1, unknown_token))
|> Nx.tensor()
|> then(&Nx.pad(&1, pad_token, [{0, max_seq_len - Nx.size(&1), 0}]))
end
batch_size = 64
train_pipeline =
train_data
|> Stream.map(fn {review, label} ->
{tokenize.(review), Nx.tensor(label)}
end)
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn reviews_and_labels ->
{review, label} = Enum.unzip(reviews_and_labels)
{Nx.stack(review), Nx.stack(label) |> Nx.new_axis(-1)}
end)
test_pipeline =
test_data
|> Stream.map(fn {review, label} ->
{tokenize.(review), Nx.tensor(label)}
end)
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn reviews_and_labels ->
{review, label} = Enum.unzip(reviews_and_labels)
{Nx.stack(review), Nx.stack(label)
|> Nx.new_axis(-1)} end)
Enum.take(train_pipeline, 1)
model =
Axon.input("review")
|> Axon.embedding(num_tokens + 2, 64)
|> Axon.flatten()
|> Axon.dense(64, activation: :relu)
|> Axon.dense(1)
input_template = Nx.template({64, 64}, :s64)
Axon.Display.as_graph(model, input_template)
loss = &Axon.Losses.binary_cross_entropy(&1, &2,
from_logits: true,
reduction: :mean
)
optimizer = Axon.Optimizers.adam(1.0e-4)
trained_model_state =
model
|> Axon.Loop.trainer(loss, optimizer)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(train_pipeline, %{}, epochs: 10, compiler: EXLA)
model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, trained_model_state, compiler: EXLA)
sequence = Axon.input("review")
embedded = sequence |> Axon.embedding(num_tokens + 2, 64)
mask = Axon.mask(sequence, 0)
{rnn_sequence, _state} = Axon.lstm(embedded, 64, mask: mask, unroll: :static)
magic_word = "sixers"
input = ["rockets", "mavericks", "sixers", "sixers",
"magic", "nets", "sixers"]
{output, _} = Enum.map_reduce(input, 0, fn entry, count ->
if entry == magic_word do
{count + 1, count + 1}
else
{count, count}
end
end)
final_token = Axon.nx(rnn_sequence, fn seq ->
Nx.squeeze(seq[[0..-1 // 1, -1, 0..-1 // 1]])
end)
model =
final_token
|> Axon.dense(64, activation: :relu)
|> Axon.dense(1)
input_template = Nx.template({64, 64}, :s64)
Axon.Display.as_graph(model, input_template)
loss = &Axon.Losses.binary_cross_entropy(&1, &2,
from_logits: true,
reduction: :mean
)
optimizer = Axon.Optimizers.adam(1.0e-4)
trained_model_state =
model
|> Axon.Loop.trainer(loss, optimizer)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(train_pipeline, %{}, epochs: 10, compiler: EXLA)
model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, trained_model_state, compiler: EXLA)