AI Framework Comparison for Elixir
Setup
Mix.install([
{:nx, "~> 0.5"},
{:bumblebee, "~> 0.4"},
{:axon, "~> 0.5"},
{:explorer, "~> 0.7"},
{:kino, "~> 0.11"},
{:req, "~> 0.4"},
{:jason, "~> 1.4"}
])
Framework Comparison
defmodule AIComparison do
def frameworks do
%{
"nx_and_bumblebee" => %{
name: "Nx + Bumblebee",
strengths: [
"Native Elixir implementation",
"HuggingFace models support",
"GPU acceleration",
"Built-in model serving"
],
weaknesses: [
"Smaller ecosystem than Python",
"Fewer pre-trained models"
],
use_cases: [
"Text generation",
"Classification",
"Embeddings",
"Image processing"
],
example: """
{:ok, model} = Bumblebee.load_model({:hf, "microsoft/resnet-50"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "microsoft/resnet-50"})
serving = Bumblebee.Vision.image_classification(model, featurizer)
Nx.Serving.run(serving, image_input)
"""
},
"axon" => %{
name: "Axon",
strengths: [
"Neural network framework",
"Native Elixir",
"Good for custom models",
"Integration with Nx"
],
weaknesses: [
"More low-level than alternatives",
"Requires more ML expertise"
],
use_cases: [
"Custom neural networks",
"Model training",
"Research"
],
example: """
model =
Axon.input("input", shape: {nil, 784})
|> Axon.dense(128, activation: :relu)
|> Axon.dense(10, activation: :softmax)
model
|> Axon.Loop.trainer(:categorical_crossentropy, :adam)
|> Axon.Loop.run(data, epochs: 10)
"""
},
"python_interop" => %{
name: "Python Interop (LangChain)",
strengths: [
"Full LangChain features",
"Large ecosystem",
"Many pre-trained models",
"Rich tooling"
],
weaknesses: [
"Python dependency",
"Performance overhead",
"More complex setup"
],
use_cases: [
"Complex LLM applications",
"Chain operations",
"Document processing",
"RAG implementations"
],
example: """
# config/config.exs
config :erlport_python,
python: "/path/to/python",
python_path: "/path/to/langchain"
# Implementation
defmodule PyLangChain do
use Export.Python
def create_chain do
py_call(langchain_module, :create_chain, [])
end
end
"""
}
}
end
end
Microsoft Fabric Integration
defmodule FabricIntegration do
def connection_examples do
%{
"synapse" => %{
name: "Synapse Analytics",
setup: """
# mix.exs
def deps do
[
{:microsoft_fabric, "~> 0.1"},
{:req, "~> 0.4"}
]
end
""",
example: """
defmodule MyApp.Fabric do
def query_synapse(query) do
headers = [
{"Authorization", "Bearer " <> get_token()},
{"Content-Type", "application/json"}
]
body = Jason.encode!(%{
"query" => query,
"workspace" => workspace_id()
})
Req.post!(
"https://#{workspace()}.fabric.microsoft.com/synapse/query",
headers: headers,
body: body
)
end
defp get_token do
# Implement Azure AD token acquisition
end
end
"""
},
"lakehouse" => %{
name: "Lakehouse",
example: """
defmodule MyApp.Lakehouse do
def read_data(path) do
Explorer.DataFrame.from_parquet!(
"abfs://#{container()}/#{path}",
storage_options: azure_credentials()
)
end
defp azure_credentials do
%{
"account_name" => System.get_env("AZURE_STORAGE_ACCOUNT"),
"account_key" => System.get_env("AZURE_STORAGE_KEY")
}
end
end
"""
}
}
end
end
AI Pipeline Example
defmodule AIPipeline do
@moduledoc """
Example combining Elixir AI tools with Microsoft Fabric
"""
def create_pipeline do
%{
"data_ingestion" => %{
step: :ingest,
implementation: """
defmodule Pipeline.Ingestion do
def load_training_data do
MyApp.Fabric.query_synapse(\"\"\"
SELECT *
FROM training_data
WHERE batch_id = @batch_id
\"\"\")
|> transform_results()
end
def load_embeddings do
MyApp.Lakehouse.read_data("embeddings/latest.parquet")
|> Explorer.DataFrame.filter(col("score") > 0.8)
end
end
"""
},
"preprocessing" => %{
step: :preprocess,
implementation: """
defmodule Pipeline.Preprocessing do
def prepare_features(data) do
data
|> Explorer.DataFrame.mutate(
text_length: col("text") |> transform(&String.length/1),
normalized_score: col("score") / col("max_score")
)
end
end
"""
},
"model_inference" => %{
step: :inference,
implementation: """
defmodule Pipeline.Inference do
def run_inference(data) do
# Load Bumblebee model
{:ok, model} = Bumblebee.load_model({:hf, "microsoft/deberta-v3-base"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "microsoft/deberta-v3-base"})
serving = Bumblebee.Text.sequence_classification(
model,
tokenizer,
top_k: 3
)
# Run inference
data
|> Explorer.DataFrame.to_rows()
|> Task.async_stream(&process_row(&1, serving))
|> Enum.to_list()
end
end
"""
},
"result_storage" => %{
step: :store,
implementation: """
defmodule Pipeline.Storage do
def save_results(results) do
results
|> Explorer.DataFrame.from_rows()
|> Explorer.DataFrame.to_parquet!(
"results/#{timestamp()}.parquet",
storage_options: azure_credentials()
)
end
end
"""
}
}
end
end
Recommendations
For a Microsoft Fabric competition, here’s a suggested approach:
-
Core Framework Choice:
-
Use
Nx
+Bumblebee
for model inference -
Use
Explorer
for data handling - Consider Python interop for LangChain if needed
-
Use
-
Data Pipeline:
defmodule CompetitionPipeline do def run do Pipeline.Ingestion.load_training_data() |> Pipeline.Preprocessing.prepare_features() |> Pipeline.Inference.run_inference() |> Pipeline.Storage.save_results() end end
-
Microsoft Fabric Integration:
- Use Synapse for data warehousing
- Use Lakehouse for model artifacts
- Use OneLake for data storage
-
Development Workflow:
# Setup mix new ai_competition --sup cd ai_competition # Add dependencies mix deps.get # Configure Fabric connection mix fabric.setup # Run pipeline mix run lib/pipeline.ex
Would you like me to expand on any particular aspect or provide more specific examples?