Interpolation and Fixed Times
Mix.install([
{:integrator, github: "woodward/integrator"},
{:kino_vega_lite, "~> 0.1"}
])
Interpolation
By default, refine: 4
for integrator DormandPrince45
. This means that four points are interpolated
for every solution of the ODE.
alias Integrator.SampleEqns
alias Integrator.DataCollector
t_initial = Nx.f64(0.0)
t_final = Nx.f64(20.0)
x_initial = Nx.f64([2.0, 0.0])
{:ok, pid} = DataCollector.start_link()
output_fn = &DataCollector.add_data(pid, &1)
opts = [type: :f64, output_fn: output_fn]
_solution = Integrator.integrate(&SampleEqns.van_der_pol_fn/2, t_initial, t_final, x_initial, opts)
points = DataCollector.get_data(pid)
Visualizing refine: 4
:
alias VegaLite, as: VLq
alias Integrator.Point
defmodule VanDerPol do
def plot(points) do
data =
points
|> Enum.map(&Point.to_number(&1))
|> Enum.map(fn point ->
%{t: t, x: x} = point
[
%{t: t, x: List.first(x), x_value: "x[0]"},
%{t: t, x: List.last(x), x_value: "x[1]"}
]
end)
|> List.flatten()
VL.new(
width: 600,
height: 400,
title: "Solution of van der Pol Equation (μ = 1) with Dormand-Prince45"
)
|> VL.mark(:line, point: true, tooltip: true)
|> VL.encode_field(:x, "t", type: :quantitative)
|> VL.encode_field(:y, "x", type: :quantitative)
|> VL.encode_field(:color, "x_value", type: :nominal)
|> VL.data_from_values(data)
|> Kino.VegaLite.new()
|> Kino.render()
end
end
VanDerPol.plot(points)
You can turn off interpolation by setting refine: 1
:
t_initial = Nx.f64(0.0)
t_final = Nx.f64(20.0)
x_initial = Nx.f64([2.0, 0.0])
{:ok, pid} = DataCollector.start_link()
output_fn = &DataCollector.add_data(pid, &1)
opts = [type: :f64, output_fn: output_fn, refine: 1]
_solution =
Integrator.integrate(&SampleEqns.van_der_pol_fn/2, t_initial, t_final, x_initial, opts)
points = DataCollector.get_data(pid)
VanDerPol.plot(points)
Note how much “chunkier” the plot is without the interpolated points. These points are solely those from the Runge-Kutta simulation. Note that these values can also be accessed by solution.ode_t
and solution.ode_x
.
Finally, you can output data at fixed times. For example, let’s print out data at 0.1
second intervals:
t_initial = Nx.f64(0.0)
t_final = Nx.f64(20.0)
x_initial = Nx.f64([2.0, 0.0])
{:ok, pid} = DataCollector.start_link()
output_fn = &DataCollector.add_data(pid, &1)
opts = [type: :f64, refine: 1, fixed_output_times?: Nx.u8(1), fixed_output_step: Nx.f64(0.1), output_fn: output_fn]
_solution = Integrator.integrate(&SampleEqns.van_der_pol_fn/2, t_initial, t_final, x_initial, opts)
points = DataCollector.get_data(pid)
VanDerPol.plot(points)