Untitled notebook
Mix.install([
{:axon, "~> 0.5"},
{:nx, "~> 0.5"},
{:explorer, "~> 0.5"},
{:kino, "~> 0.8"}
])
Importing of the Data
require Explorer.DataFrame, as: DF
iris = Explorer.Datasets.iris()
Normalizing the Data
normalized_iris =
DF.mutate(
iris,
for col <- across(~w(sepal_width sepal_length petal_length petal_width)) do
{col.name, (col - mean(col)) / variance(col)}
end
)
shuffled_normalized_iris = DF.shuffle(normalized_iris)
Split Data into Train and Test Data
train_df = DF.slice(shuffled_normalized_iris, 0..119)
test_df = DF.slice(shuffled_normalized_iris, 120..149)
feature_columns = [
"sepal_length",
"sepal_width",
"petal_length",
"petal_width"
]
label_column = "species"
x_train = Nx.stack(train_df[feature_columns], axis: 1)
train_categories =
train_df["species"]
|> Explorer.Series.cast(:category)
y_train =
train_categories
|> Nx.stack(axis: -1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
x_test = Nx.stack(test_df[feature_columns], axis: 1)
test_categories =
test_df["species"]
|> Explorer.Series.cast(:category)
y_test =
test_categories
|> Nx.stack(axis: -1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
Training a model
model =
Axon.input("iris_features")
|> Axon.dense(3, activation: :softmax)
Axon.Display.as_graph(model, Nx.template({1, 4}, :f32))
data_stream =
Stream.repeatedly(fn ->
{x_train, y_train}
end)
trained_model_state =
model
|> Axon.Loop.trainer(:categorical_cross_entropy, :sgd)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data_stream, %{}, iterations: 500, epochs: 10)
Evaluating the Model
data = [{x_test, y_test}]
model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data, trained_model_state)