Powered by AppSignal & Oban Pro
Would you like to see your link here? Contact us

Untitled notebook

ch1.livemd

Untitled notebook

Mix.install([
  {:axon, "~> 0.5"},
  {:nx, "~> 0.5"},
  {:explorer, "~> 0.5"},
  {:kino, "~> 0.8"}
])

Importing of the Data

require Explorer.DataFrame, as: DF

iris = Explorer.Datasets.iris()

Normalizing the Data

normalized_iris =
  DF.mutate(
    iris,
    for col <- across(~w(sepal_width sepal_length petal_length petal_width)) do
      {col.name, (col - mean(col)) / variance(col)}
    end
  )

shuffled_normalized_iris = DF.shuffle(normalized_iris)

Split Data into Train and Test Data

train_df = DF.slice(shuffled_normalized_iris, 0..119)
test_df = DF.slice(shuffled_normalized_iris, 120..149)

feature_columns = [
  "sepal_length",
  "sepal_width",
  "petal_length",
  "petal_width"
]

label_column = "species"

x_train = Nx.stack(train_df[feature_columns], axis: 1)

train_categories =
  train_df["species"]
  |> Explorer.Series.cast(:category)

y_train =
  train_categories
  |> Nx.stack(axis: -1)
  |> Nx.equal(Nx.iota({1, 3}, axis: -1))

x_test = Nx.stack(test_df[feature_columns], axis: 1)

test_categories =
  test_df["species"]
  |> Explorer.Series.cast(:category)

y_test =
  test_categories
  |> Nx.stack(axis: -1)
  |> Nx.equal(Nx.iota({1, 3}, axis: -1))

Training a model

model =
  Axon.input("iris_features")
  |> Axon.dense(3, activation: :softmax)

Axon.Display.as_graph(model, Nx.template({1, 4}, :f32))

data_stream =
  Stream.repeatedly(fn ->
    {x_train, y_train}
  end)

trained_model_state =
  model
  |> Axon.Loop.trainer(:categorical_cross_entropy, :sgd)
  |> Axon.Loop.metric(:accuracy)
  |> Axon.Loop.run(data_stream, %{}, iterations: 500, epochs: 10)

Evaluating the Model

data = [{x_test, y_test}]

model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data, trained_model_state)