Meta-Schema Evolution: Objects That Modify Themselves
Mix.install([
{:kino, "~> 0.12.0"},
{:jason, "~> 1.4"}
])
Understanding Meta-Schemas
A meta-schema is a schema that describes how schemas can be modified. It’s like DNA that can rewrite itself based on environmental pressures and performance feedback.
In AAOS, objects don’t just follow fixed programming - they can:
- Analyze their own behavior patterns
- Identify inefficiencies in their current schema
- Propose modifications to improve performance
- Test changes safely before committing
- Roll back if changes prove harmful
Let’s see this in action!
Step 1: Basic Schema Structure
defmodule Schema do
defstruct [
:id,
:version,
:attributes,
:behaviors,
:constraints,
:evolution_history,
:performance_metrics
]
def new(id, attributes \\ %{}, behaviors \\ %{}) do
%__MODULE__{
id: id,
version: "1.0.0",
attributes: attributes,
behaviors: behaviors,
constraints: %{
max_evolution_rate: 0.2,
core_attributes_immutable: true,
rollback_generations: 5
},
evolution_history: [],
performance_metrics: %{
effectiveness: 0.5,
efficiency: 0.5,
adaptability: 0.5
}
}
end
def evolve_schema(schema, performance_data, environmental_pressures) do
# Analyze current performance vs. desired performance
performance_gap = analyze_performance_gap(schema.performance_metrics, performance_data)
# Generate potential modifications
proposed_changes = generate_schema_modifications(schema, performance_gap, environmental_pressures)
# Evaluate safety and compatibility of changes
safe_changes = filter_safe_changes(proposed_changes, schema.constraints)
if length(safe_changes) > 0 do
# Apply the most promising change
best_change = Enum.max_by(safe_changes, & &1.expected_improvement)
apply_schema_change(schema, best_change)
else
{:no_evolution, "No safe beneficial changes identified"}
end
end
defp analyze_performance_gap(current_metrics, target_performance) do
%{
effectiveness_gap: target_performance.effectiveness - current_metrics.effectiveness,
efficiency_gap: target_performance.efficiency - current_metrics.efficiency,
adaptability_gap: target_performance.adaptability - current_metrics.adaptability
}
end
defp generate_schema_modifications(schema, gaps, pressures) do
modifications = []
# Suggest attribute modifications based on performance gaps
modifications = if gaps.effectiveness_gap > 0.1 do
[%{
type: :attribute_enhancement,
target: :decision_making,
change: %{sophistication_level: :increase},
expected_improvement: gaps.effectiveness_gap * 0.8,
risk_level: :low
} | modifications]
else
modifications
end
# Suggest behavior modifications based on efficiency gaps
modifications = if gaps.efficiency_gap > 0.1 do
[%{
type: :behavior_optimization,
target: :message_processing,
change: %{batch_size: :increase, priority_filtering: :enable},
expected_improvement: gaps.efficiency_gap * 0.7,
risk_level: :medium
} | modifications]
else
modifications
end
# Suggest new capabilities based on environmental pressures
modifications = if pressures.cooperation_demand > 0.7 do
[%{
type: :capability_addition,
target: :social_coordination,
change: %{coalition_formation: :add, negotiation_protocols: :add},
expected_improvement: 0.3,
risk_level: :high
} | modifications]
else
modifications
end
modifications
end
defp filter_safe_changes(proposed_changes, constraints) do
Enum.filter(proposed_changes, fn change ->
# Check if change violates evolution rate limits
evolution_rate_ok = change.expected_improvement <= constraints.max_evolution_rate
# Check if change affects immutable core attributes
core_attributes_ok = if constraints.core_attributes_immutable do
change.type != :core_attribute_modification
else
true
end
# Risk assessment
risk_acceptable = change.risk_level in [:low, :medium]
evolution_rate_ok and core_attributes_ok and risk_acceptable
end)
end
defp apply_schema_change(schema, change) do
# Create new version
new_version = increment_version(schema.version)
# Apply the change based on its type
{updated_attributes, updated_behaviors} = case change.type do
:attribute_enhancement ->
enhanced_attrs = Map.update(schema.attributes, change.target, %{}, fn attr ->
Map.merge(attr, change.change)
end)
{enhanced_attrs, schema.behaviors}
:behavior_optimization ->
optimized_behaviors = Map.update(schema.behaviors, change.target, %{}, fn behavior ->
Map.merge(behavior, change.change)
end)
{schema.attributes, optimized_behaviors}
:capability_addition ->
new_behaviors = Map.merge(schema.behaviors, change.change)
{schema.attributes, new_behaviors}
end
# Record evolution in history
evolution_record = %{
from_version: schema.version,
to_version: new_version,
change_applied: change,
timestamp: DateTime.utc_now(),
reason: "Performance optimization"
}
updated_history = [evolution_record | Enum.take(schema.evolution_history, 4)]
evolved_schema = %{schema |
version: new_version,
attributes: updated_attributes,
behaviors: updated_behaviors,
evolution_history: updated_history
}
IO.puts("🧬 Schema #{schema.id} evolved from #{schema.version} → #{new_version}")
IO.puts(" Change: #{change.type} on #{change.target}")
IO.puts(" Expected improvement: #{Float.round(change.expected_improvement * 100, 1)}%")
{:evolved, evolved_schema}
end
defp increment_version(version) do
[major, minor, patch] = String.split(version, ".") |> Enum.map(&String.to_integer/1)
"#{major}.#{minor}.#{patch + 1}"
end
def display_schema_status(schema) do
IO.puts("\n📋 Schema #{schema.id} (v#{schema.version}):")
IO.puts(" Attributes: #{map_size(schema.attributes)}")
IO.puts(" Behaviors: #{map_size(schema.behaviors)}")
IO.puts(" Performance:")
IO.puts(" Effectiveness: #{Float.round(schema.performance_metrics.effectiveness * 100, 1)}%")
IO.puts(" Efficiency: #{Float.round(schema.performance_metrics.efficiency * 100, 1)}%")
IO.puts(" Adaptability: #{Float.round(schema.performance_metrics.adaptability * 100, 1)}%")
IO.puts(" Evolution History: #{length(schema.evolution_history)} changes")
if length(schema.evolution_history) > 0 do
latest = hd(schema.evolution_history)
IO.puts(" Latest Evolution: #{latest.change_applied.type} (#{latest.from_version} → #{latest.to_version})")
end
end
end
# Create a basic agent schema
agent_schema = Schema.new(:agent_alpha,
%{
decision_making: %{sophistication_level: :basic, learning_rate: 0.1},
memory: %{capacity: 1000, retention_policy: :fifo},
communication: %{protocols: [:basic_messaging], bandwidth: :standard}
},
%{
message_processing: %{batch_size: 1, priority_filtering: false},
goal_pursuit: %{planning_depth: 3, adaptation_frequency: :daily},
social_interaction: %{trust_model: :simple, reputation_tracking: false}
}
)
Schema.display_schema_status(agent_schema)
Step 2: Performance-Driven Evolution
# Simulate performance data indicating room for improvement
current_performance = %{
effectiveness: 0.4, # Below target
efficiency: 0.3, # Needs improvement
adaptability: 0.6 # Acceptable
}
target_performance = %{
effectiveness: 0.8,
efficiency: 0.7,
adaptability: 0.7
}
environmental_pressures = %{
cooperation_demand: 0.8, # High need for cooperation
resource_scarcity: 0.6, # Moderate resource pressure
change_frequency: 0.7 # Frequent environmental changes
}
IO.puts("🎯 Performance Analysis:")
IO.puts("Current vs Target Effectiveness: #{current_performance.effectiveness} → #{target_performance.effectiveness}")
IO.puts("Current vs Target Efficiency: #{current_performance.efficiency} → #{target_performance.efficiency}")
IO.puts("Environmental Cooperation Demand: #{environmental_pressures.cooperation_demand}")
# Attempt schema evolution
case Schema.evolve_schema(agent_schema, target_performance, environmental_pressures) do
{:evolved, evolved_schema} ->
Schema.display_schema_status(evolved_schema)
agent_schema = evolved_schema
{:no_evolution, reason} ->
IO.puts("❌ Evolution failed: #{reason}")
end
Step 3: Multi-Generation Evolution
defmodule EvolutionSimulator do
def simulate_evolution_cycles(schema, num_cycles \\ 5) do
IO.puts("\n🔄 Simulating #{num_cycles} evolution cycles...")
Enum.reduce(1..num_cycles, schema, fn cycle, current_schema ->
IO.puts("\n--- Cycle #{cycle} ---")
# Simulate varying performance and environmental conditions
performance = %{
effectiveness: 0.3 + :rand.uniform() * 0.4, # 0.3 to 0.7
efficiency: 0.2 + :rand.uniform() * 0.5, # 0.2 to 0.7
adaptability: 0.4 + :rand.uniform() * 0.4 # 0.4 to 0.8
}
target = %{
effectiveness: 0.8,
efficiency: 0.8,
adaptability: 0.8
}
pressures = %{
cooperation_demand: :rand.uniform(),
resource_scarcity: :rand.uniform(),
change_frequency: :rand.uniform()
}
# Update schema performance metrics based on simulation
updated_metrics = %{
effectiveness: min(1.0, current_schema.performance_metrics.effectiveness + (:rand.uniform() - 0.5) * 0.1),
efficiency: min(1.0, current_schema.performance_metrics.efficiency + (:rand.uniform() - 0.5) * 0.1),
adaptability: min(1.0, current_schema.performance_metrics.adaptability + (:rand.uniform() - 0.5) * 0.1)
}
schema_with_metrics = %{current_schema | performance_metrics: updated_metrics}
case Schema.evolve_schema(schema_with_metrics, target, pressures) do
{:evolved, evolved} -> evolved
{:no_evolution, _} -> schema_with_metrics
end
end)
end
def analyze_evolution_trajectory(schema) do
IO.puts("\n📈 Evolution Trajectory Analysis:")
IO.puts("Schema #{schema.id} - Final Version: #{schema.version}")
if length(schema.evolution_history) > 0 do
IO.puts("\nEvolution History:")
schema.evolution_history
|> Enum.reverse() # Show chronological order
|> Enum.with_index(1)
|> Enum.each(fn {evolution, index} ->
IO.puts(" #{index}. #{evolution.from_version} → #{evolution.to_version}")
IO.puts(" Change: #{evolution.change_applied.type}")
IO.puts(" Target: #{evolution.change_applied.target}")
IO.puts(" Expected improvement: #{Float.round(evolution.change_applied.expected_improvement * 100, 1)}%")
end)
# Calculate evolution velocity
total_changes = length(schema.evolution_history)
if total_changes > 1 do
first_evolution = List.last(schema.evolution_history)
latest_evolution = hd(schema.evolution_history)
time_span = DateTime.diff(latest_evolution.timestamp, first_evolution.timestamp, :hour)
evolution_velocity = if time_span > 0, do: total_changes / time_span, else: 0
IO.puts("\nEvolution Velocity: #{Float.round(evolution_velocity, 3)} changes/hour")
end
else
IO.puts("No evolution history recorded.")
end
end
end
# Run evolution simulation
final_schema = EvolutionSimulator.simulate_evolution_cycles(agent_schema, 5)
EvolutionSimulator.analyze_evolution_trajectory(final_schema)
Step 4: Schema Compatibility and Inheritance
defmodule SchemaInheritance do
def create_specialized_schema(parent_schema, specialization) do
specialized_attributes = case specialization do
:researcher ->
Map.merge(parent_schema.attributes, %{
knowledge_base: %{domains: [], update_frequency: :continuous},
hypothesis_generation: %{creativity_level: :high, validation_rigor: :strict},
data_analysis: %{statistical_methods: [:regression, :clustering], visualization: true}
})
:coordinator ->
Map.merge(parent_schema.attributes, %{
resource_management: %{optimization_algorithm: :genetic, load_balancing: true},
team_coordination: %{communication_style: :directive, delegation_strategy: :capability_based},
conflict_resolution: %{mediation_approach: :collaborative, escalation_rules: []}
})
:creative ->
Map.merge(parent_schema.attributes, %{
creative_processes: %{inspiration_sources: [:random, :analogical], idea_generation: :divergent},
aesthetic_evaluation: %{criteria: [:novelty, :beauty, :usefulness], weighting: :adaptive},
iteration_strategy: %{refinement_cycles: 5, feedback_integration: :selective}
})
end
specialized_behaviors = case specialization do
:researcher ->
Map.merge(parent_schema.behaviors, %{
research_methodology: %{approach: :systematic, documentation: :comprehensive},
peer_review: %{collaboration_level: :high, critique_acceptance: :open},
knowledge_sharing: %{publication_frequency: :regular, open_access: true}
})
:coordinator ->
Map.merge(parent_schema.behaviors, %{
task_allocation: %{fairness_priority: :high, efficiency_optimization: true},
performance_monitoring: %{metrics_tracking: :real_time, feedback_delivery: :constructive},
strategic_planning: %{horizon: :long_term, contingency_preparation: true}
})
:creative ->
Map.merge(parent_schema.behaviors, %{
brainstorming: %{session_structure: :loose, idea_capture: :comprehensive},
prototype_development: %{iteration_speed: :rapid, user_testing: :frequent},
artistic_expression: %{medium_flexibility: :high, style_evolution: :continuous}
})
end
specialized_schema = %{parent_schema |
id: :"#{specialization}_#{parent_schema.id}",
version: "1.0.0-#{specialization}",
attributes: specialized_attributes,
behaviors: specialized_behaviors,
evolution_history: []
}
IO.puts("🎭 Created specialized schema: #{specialized_schema.id}")
IO.puts(" Inherited from: #{parent_schema.id} (v#{parent_schema.version})")
IO.puts(" Specialization: #{specialization}")
IO.puts(" New attributes: #{map_size(specialized_attributes) - map_size(parent_schema.attributes)}")
IO.puts(" New behaviors: #{map_size(specialized_behaviors) - map_size(parent_schema.behaviors)}")
specialized_schema
end
def calculate_schema_compatibility(schema1, schema2) do
# Calculate attribute compatibility
common_attributes = Map.keys(schema1.attributes)
|> Enum.filter(&Map.has_key?(schema2.attributes, &1))
attribute_compatibility = if length(common_attributes) > 0 do
compatible_attrs = Enum.count(common_attributes, fn attr ->
attr1 = schema1.attributes[attr]
attr2 = schema2.attributes[attr]
# Simplified compatibility check
map_size(Map.take(attr1, Map.keys(attr2))) / map_size(attr1) > 0.5
end)
compatible_attrs / length(common_attributes)
else
0.0
end
# Calculate behavior compatibility
common_behaviors = Map.keys(schema1.behaviors)
|> Enum.filter(&Map.has_key?(schema2.behaviors, &1))
behavior_compatibility = if length(common_behaviors) > 0 do
compatible_behaviors = Enum.count(common_behaviors, fn behavior ->
beh1 = schema1.behaviors[behavior]
beh2 = schema2.behaviors[behavior]
# Check if behaviors have similar structure
map_size(Map.take(beh1, Map.keys(beh2))) / map_size(beh1) > 0.5
end)
compatible_behaviors / length(common_behaviors)
else
0.0
end
# Overall compatibility score
overall_compatibility = (attribute_compatibility + behavior_compatibility) / 2
%{
overall: overall_compatibility,
attributes: attribute_compatibility,
behaviors: behavior_compatibility,
common_attributes: length(common_attributes),
common_behaviors: length(common_behaviors)
}
end
def attempt_schema_merge(schema1, schema2, compatibility_threshold \\ 0.6) do
compatibility = calculate_schema_compatibility(schema1, schema2)
if compatibility.overall >= compatibility_threshold do
# Merge compatible schemas
merged_attributes = Map.merge(schema1.attributes, schema2.attributes)
merged_behaviors = Map.merge(schema1.behaviors, schema2.behaviors)
merged_schema = %{schema1 |
id: :"merged_#{schema1.id}_#{schema2.id}",
version: "1.0.0-merged",
attributes: merged_attributes,
behaviors: merged_behaviors,
evolution_history: []
}
IO.puts("🤝 Successfully merged schemas!")
IO.puts(" Compatibility score: #{Float.round(compatibility.overall * 100, 1)}%")
IO.puts(" Merged schema: #{merged_schema.id}")
{:success, merged_schema}
else
IO.puts("❌ Schema merge failed - insufficient compatibility")
IO.puts(" Compatibility score: #{Float.round(compatibility.overall * 100, 1)}%")
IO.puts(" Required threshold: #{Float.round(compatibility_threshold * 100, 1)}%")
{:failed, compatibility}
end
end
end
# Create specialized schemas from our evolved schema
researcher_schema = SchemaInheritance.create_specialized_schema(final_schema, :researcher)
coordinator_schema = SchemaInheritance.create_specialized_schema(final_schema, :coordinator)
creative_schema = SchemaInheritance.create_specialized_schema(final_schema, :creative)
# Check compatibility between specialized schemas
IO.puts("\n🔍 Schema Compatibility Analysis:")
researcher_coordinator_compat = SchemaInheritance.calculate_schema_compatibility(researcher_schema, coordinator_schema)
IO.puts("Researcher ↔ Coordinator: #{Float.round(researcher_coordinator_compat.overall * 100, 1)}%")
researcher_creative_compat = SchemaInheritance.calculate_schema_compatibility(researcher_schema, creative_schema)
IO.puts("Researcher ↔ Creative: #{Float.round(researcher_creative_compat.overall * 100, 1)}%")
coordinator_creative_compat = SchemaInheritance.calculate_schema_compatibility(coordinator_schema, creative_schema)
IO.puts("Coordinator ↔ Creative: #{Float.round(coordinator_creative_compat.overall * 100, 1)}%")
# Attempt to merge the most compatible schemas
IO.puts("\n🔄 Attempting Schema Merge:")
case SchemaInheritance.attempt_schema_merge(researcher_schema, coordinator_schema, 0.5) do
{:success, merged_schema} ->
Schema.display_schema_status(merged_schema)
{:failed, compatibility_info} ->
IO.puts("Merge details: #{inspect(compatibility_info)}")
end
Step 5: Real-Time Schema Adaptation
defmodule AdaptiveSchemaObject do
defstruct [:id, :schema, :performance_history, :adaptation_triggers, :current_state]
def new(id, initial_schema) do
%__MODULE__{
id: id,
schema: initial_schema,
performance_history: [],
adaptation_triggers: %{
performance_drop_threshold: 0.2,
stagnation_period: 5,
environmental_change_sensitivity: 0.3
},
current_state: %{
energy: 100,
task_completion_rate: 0.5,
social_satisfaction: 0.6,
learning_progress: 0.4
}
}
end
def execute_task(object, task_type, difficulty) do
# Simulate task execution based on current schema capabilities
success_probability = calculate_success_probability(object.schema, task_type, difficulty)
success = :rand.uniform() < success_probability
# Update performance history
performance_record = %{
task_type: task_type,
difficulty: difficulty,
success: success,
timestamp: DateTime.utc_now(),
schema_version: object.schema.version
}
updated_history = [performance_record | Enum.take(object.performance_history, 19)]
# Update current state based on task outcome
state_changes = if success do
%{
task_completion_rate: min(1.0, object.current_state.task_completion_rate + 0.05),
learning_progress: min(1.0, object.current_state.learning_progress + 0.02)
}
else
%{
task_completion_rate: max(0.0, object.current_state.task_completion_rate - 0.03),
energy: max(0, object.current_state.energy - 5)
}
end
updated_state = Map.merge(object.current_state, state_changes)
IO.puts("#{if success, do: "✅", else: "❌"} #{object.id} executed #{task_type} (difficulty: #{difficulty}) - #{if success, do: "SUCCESS", else: "FAILED"}")
updated_object = %{object |
performance_history: updated_history,
current_state: updated_state
}
# Check if adaptation is needed
check_adaptation_triggers(updated_object)
end
defp calculate_success_probability(schema, task_type, difficulty) do
# Base probability from schema capabilities
base_prob = case task_type do
:research when Map.has_key?(schema.attributes, :knowledge_base) -> 0.8
:coordination when Map.has_key?(schema.attributes, :resource_management) -> 0.8
:creative when Map.has_key?(schema.attributes, :creative_processes) -> 0.8
:social when Map.has_key?(schema.behaviors, :social_interaction) -> 0.7
_ -> 0.5 # Generic capability
end
# Adjust for difficulty
difficulty_modifier = case difficulty do
:easy -> 1.2
:medium -> 1.0
:hard -> 0.7
:extreme -> 0.4
end
# Apply performance metrics influence
performance_modifier = (schema.performance_metrics.effectiveness + schema.performance_metrics.efficiency) / 2
min(1.0, max(0.1, base_prob * difficulty_modifier * performance_modifier))
end
defp check_adaptation_triggers(object) do
recent_performance = object.performance_history
|> Enum.take(5)
|> Enum.map(& &1.success)
success_rate = if length(recent_performance) > 0 do
Enum.count(recent_performance, & &1) / length(recent_performance)
else
0.5
end
# Check for performance drop
performance_drop = object.current_state.task_completion_rate < object.adaptation_triggers.performance_drop_threshold
# Check for stagnation
version_changes = object.performance_history
|> Enum.take(object.adaptation_triggers.stagnation_period)
|> Enum.map(& &1.schema_version)
|> Enum.uniq()
stagnation = length(version_changes) <= 1 and length(object.performance_history) >= object.adaptation_triggers.stagnation_period
cond do
performance_drop ->
IO.puts("🚨 Performance drop detected - triggering adaptation")
adapt_schema(object, :performance_recovery)
stagnation and success_rate < 0.7 ->
IO.puts("📈 Stagnation detected - triggering optimization")
adapt_schema(object, :optimization)
success_rate > 0.9 ->
IO.puts("🎯 High performance - considering capability expansion")
adapt_schema(object, :capability_expansion)
true ->
object
end
end
defp adapt_schema(object, adaptation_reason) do
target_performance = case adaptation_reason do
:performance_recovery -> %{
effectiveness: object.schema.performance_metrics.effectiveness + 0.3,
efficiency: object.schema.performance_metrics.efficiency + 0.2,
adaptability: object.schema.performance_metrics.adaptability + 0.1
}
:optimization -> %{
effectiveness: min(1.0, object.schema.performance_metrics.effectiveness + 0.1),
efficiency: min(1.0, object.schema.performance_metrics.efficiency + 0.2),
adaptability: min(1.0, object.schema.performance_metrics.adaptability + 0.1)
}
:capability_expansion -> %{
effectiveness: min(1.0, object.schema.performance_metrics.effectiveness + 0.1),
efficiency: object.schema.performance_metrics.efficiency,
adaptability: min(1.0, object.schema.performance_metrics.adaptability + 0.3)
}
end
environmental_pressures = %{
cooperation_demand: :rand.uniform(),
resource_scarcity: :rand.uniform(),
change_frequency: :rand.uniform()
}
case Schema.evolve_schema(object.schema, target_performance, environmental_pressures) do
{:evolved, evolved_schema} ->
IO.puts("🧬 Schema adapted successfully for #{adaptation_reason}")
%{object | schema: evolved_schema}
{:no_evolution, reason} ->
IO.puts("⚠️ Schema adaptation failed: #{reason}")
object
end
end
def display_adaptive_status(object) do
recent_success_rate = if length(object.performance_history) > 0 do
recent_successes = object.performance_history
|> Enum.take(5)
|> Enum.count(& &1.success)
recent_successes / min(5, length(object.performance_history)) * 100
else
0
end
IO.puts("\n🤖 Adaptive Object #{object.id}:")
IO.puts(" Schema Version: #{object.schema.version}")
IO.puts(" Recent Success Rate: #{Float.round(recent_success_rate, 1)}%")
IO.puts(" Task Completion Rate: #{Float.round(object.current_state.task_completion_rate * 100, 1)}%")
IO.puts(" Energy: #{object.current_state.energy}/100")
IO.puts(" Learning Progress: #{Float.round(object.current_state.learning_progress * 100, 1)}%")
IO.puts(" Schema Evolutions: #{length(object.schema.evolution_history)}")
if length(object.performance_history) > 0 do
latest_task = hd(object.performance_history)
IO.puts(" Latest Task: #{latest_task.task_type} (#{latest_task.difficulty}) - #{if latest_task.success, do: "✅", else: "❌"}")
end
end
end
# Create an adaptive object with the researcher schema
adaptive_researcher = AdaptiveSchemaObject.new(:adaptive_alpha, researcher_schema)
AdaptiveSchemaObject.display_adaptive_status(adaptive_researcher)
# Simulate a series of tasks that will trigger adaptations
tasks = [
{:research, :easy},
{:research, :medium},
{:coordination, :hard}, # Should struggle with this
{:coordination, :hard}, # Continued struggle
{:research, :extreme}, # Very difficult
{:creative, :medium},
{:research, :easy}, # Should improve after adaptation
{:research, :medium},
{:social, :easy},
{:research, :hard}
]
IO.puts("\n🎮 Starting Task Simulation...")
final_adaptive_object = Enum.reduce(tasks, adaptive_researcher, fn {task_type, difficulty}, acc ->
updated_object = AdaptiveSchemaObject.execute_task(acc, task_type, difficulty)
Process.sleep(100) # Small delay for readability
updated_object
end)
IO.puts("\n=== Final Adaptive Status ===")
AdaptiveSchemaObject.display_adaptive_status(final_adaptive_object)
Key Insights from Meta-Schema Evolution
This demonstration shows how objects can:
- Self-Analyze: Detect performance gaps and identify improvement opportunities
- Self-Modify: Generate and apply safe schema modifications
- Self-Optimize: Continuously adapt based on environmental feedback
- Inherit & Specialize: Create specialized variants while maintaining compatibility
- Collaborate: Merge compatible schemas to create hybrid capabilities
The meta-schema system ensures that:
- Evolution is safe (constraints prevent harmful changes)
- Changes are beneficial (performance-driven modifications)
- History is preserved (rollback capability)
- Compatibility is maintained (inheritance and merging rules)
Next up: See how these self-modifying objects learn through OORL!
IO.puts("🎉 Meta-Schema Evolution Demo Complete!")
IO.puts("The objects are literally rewriting their own code based on experience!")
IO.puts("Next: Check out the OORL livebook to see how they learn and form coalitions!")