Powered by AppSignal & Oban Pro
Would you like to see your link here? Contact us

xkcd-np

livebooks/xkcd_np.livemd

xkcd-np

Mix.install([
  :fixpoint,
  {:kino, "~> 0.10.0"}
])

Logger.configure(level: :notice)

defmodule ServingTablesHelpers do
  def visualize_route(optimal_route, distances, tables, table_coordinates) do
    len = length(tables)

    IO.puts(
      Enum.map_join(optimal_route, " \u2b95 ", fn idx -> "[" <> Enum.at(tables, idx) <> "]" end)
    )

    IO.puts("\n")
    IO.puts("Start from where you are, and follow the directions :-)")

    ## Create a route visualization
    route_graph =
      Enum.reduce(
        0..(len - 1),
        Graph.new(),
        fn idx, acc ->
          v1 = Enum.at(optimal_route, idx)
          v2 = Enum.at(optimal_route, idx + 1)

          weight = Enum.at(distances, v1) |> Enum.at(v2)
          Graph.add_edge(acc, v1, v2, len: weight, label: " #{weight} ")
        end
      )

    {:ok, route_graph_content} = Graph.to_dot(route_graph)

    route_graph_content =
      Enum.reduce(0..(len - 1), route_graph_content, fn idx, acc ->
        {x, y} = Enum.at(table_coordinates, idx)
        replace_params = "[label=#{Enum.at(tables, idx)}; pos=\"#{x},#{y}!\"]"
        # || "[label=#{Enum.at(tables,idx)}]"
        String.replace(acc, "[label=#{idx}]", replace_params)
      end)

    dir = System.tmp_dir!()
    dot_file = Path.join(dir, "xkcd_route_graph.dot")
    png_file = Path.join(dir, "xkcd_route.png")
    File.write(dot_file, route_graph_content)

    System.cmd("neato", [
      "-Tpng:quartz",
      dot_file,
      "-o",
      png_file,
      "-Nfontsize=20",
      "-Nfontcolor=red",
      "-Nshape=diamond",
      "-Efontcolor=blue",
      "-Efontsize=20"
    ])

    ## Render with Kino
    content = File.read!(png_file)
    Kino.Image.new(content, "image/png")
  end

  def distances_from_coordinates(coordinates) do
    len = length(coordinates)

    for i <- 0..(len - 1) do
      {x1, y1} = Enum.at(coordinates, i)

      for j <- 0..(len - 1) do
        {x2, y2} = Enum.at(coordinates, j)
        :math.sqrt(:math.pow(x1 - x2, 2) + :math.pow(y1 - y2, 2)) |> round()
      end
    end
  end
end

How do you solve with Constraint Programming?

xkcd, as always, helps us to explain things :-)

image

Solving customer request for appetizers

First, create a model for the problem.

Meaning we declare the decision variables and the constraints over them.

  • The decision variables are the quantities per appetizer
  • The single constraint is that the total price of the appetizers is exactly what the customers require.
defmodule XKCD.NP.Appetizers do
  alias CPSolver.IntVariable, as: Variable
  alias CPSolver.Model
  import CPSolver.Variable.View.Factory
  alias CPSolver.Constraint.Sum

  def model() do
    appetizers = [
      {:mixed_fruit, 215},
      {:french_fries, 275},
      {:side_salad, 335},
      {:hot_wings, 355},
      {:mozarella_sticks, 420},
      {:sampler_plate, 580}
    ]

    total = 1505

    ## We want to find the quantities for each appetizer...
    quantities =
      Enum.map(appetizers, fn {name, price} ->
        Variable.new(0..div(total, price), name: name)
      end)

    ### ...such that the total price will be exactly as the customers ask
    ###
    priced_quantities =
      Enum.zip(quantities, appetizers)
      |> Enum.map(fn {q_var, {_name, price}} -> mul(q_var, price) end)


    Model.new(
      quantities,
      [Sum.new(total, priced_quantities)]
    )
  end

  def print_solutions(solver_results) do
    (Enum.map_join(solver_results.solutions, "\n OR \n", fn sol ->
       sol
       |> Enum.zip(solver_results.variables)
       |> Enum.reject(fn {q, name} -> q == 0 || is_reference(name) end)
       |> Enum.map_join(", ", fn {q, name} ->
         IO.ANSI.red() <> "#{name} : #{IO.ANSI.blue()}#{q}"
       end)
     end) <> IO.ANSI.reset())
    |> IO.puts()
  end
end

Once we have a model, we feed it to a solver.

alias XKCD.NP.Appetizers
## Solve
{:ok, res} = CPSolver.solve(Appetizers.model())
## Present results
Appetizers.print_solutions(res)

IO.puts("Solver status: #{res.status}")

That’s it! Two solutions are available.

Serving tables as fast as possible

We want to minimize the total distance the waiter walks to serve the tables.

We will use a model that solves Travelling Salesman Problem:

https://github.com/bokner/fixpoint/blob/main/lib/examples/tsp.ex

alias CPSolver.Examples.TSP
import ServingTablesHelpers

tables = ["Table1", "Table2", "Table3", "Table4", "Table5", "Table6", "Table7"]

table_coordinates = [{4, 7}, {5, 5}, {7, 2}, {1, 5}, {1, 1}, {8, 4}, {11, 5}]

distances = distances_from_coordinates(table_coordinates)

model = TSP.model(distances)
{:ok, result} = CPSolver.solve(model, search: TSP.search(model), space_threads: 8)

optimal_solution = result.solutions |> List.last()

optimal_route = TSP.to_route(optimal_solution, model)

visualize_route(optimal_route, distances, tables, table_coordinates)
result.solutions
{result.statistics.elapsed_time, optimal_route, result.objective}