Machine Learning in Elixir, Chapter 1
Mix.install([
{:axon, "~> 0.5"},
{:nx, "~> 0.5"},
{:explorer, "~> 0.5"},
{:kino, "~> 0.8"}
])
Section
require Explorer.DataFrame, as: DF
iris = Explorer.Datasets.iris()
cols = ~w(sepal_length sepal_width petal_length petal_width)
normalized_iris =
DF.mutate(
iris,
for col <- across(^cols) do
{col.name, (col - mean(col)) / standard_deviation(col)}
end
)
shuffled_normalized_iris = DF.shuffle(normalized_iris)
train_df = DF.slice(shuffled_normalized_iris, 0..119)
test_df = DF.slice(shuffled_normalized_iris, 120..149)
feature_columns = [
"sepal_length",
"sepal_width",
"petal_length",
"petal_width"
]
label_column = "species"
# see https://elixirforum.com/t/book-question-machine-learning-in-elixir-poor-accuracy-for-chapter-1s-example/57185/8
feature_columns = ["sepal_length", "sepal_width", "petal_length", "petal_width"]
label_column = "species"
x_all = Nx.stack(shuffled_normalized_iris[feature_columns], axis: 1)
y_all =
shuffled_normalized_iris[label_column]
|> Explorer.Series.cast(:category)
|> Nx.stack(axis: -1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
x_train = x_all[0..119]
x_test = x_all[120..149]
y_train = y_all[0..119]
y_test = y_all[120..149]
model =
Axon.input("iris_features", shape: {nil, 4})
|> Axon.dense(3, activation: :softmax)
Axon.Display.as_graph(model, Nx.template({1, 4}, :f32))
data_stream =
Stream.repeatedly(fn ->
{x_train, y_train}
end)
trained_model_state =
model
|> Axon.Loop.trainer(:categorical_cross_entropy, :sgd)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data_stream, %{}, iterations: 500, epochs: 10)
data = [{x_test, y_test}]
results =
model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data, trained_model_state)