chatper 08
Mix.install([
{:axon, "~> 0.5"},
{:nx, "~> 0.5"},
{:exla, "~> 0.5"},
{:stb_image, "~> 0.6"},
{:kino, "~> 0.8"},
{:axon_onnx, github: "elixir-nx/axon_onnx"}
])
Nx.global_default_backend(EXLA.Backend)
Section
defmodule CatsAndDogs do
def pipeline(paths, batch_size, target_height, target_width) do
paths
|> Enum.shuffle()
|> Task.async_stream(&parse_image/1)
|> Stream.filter(fn
{:ok, {%StbImage{}, _}} -> true
_ -> false end)
|> Stream.map(&to_tensors(&1, target_height, target_width))
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn chunks ->
{img_chunk, label_chunk} = Enum.unzip(chunks)
{Nx.stack(img_chunk), Nx.stack(label_chunk)}
end)
end
def pipeline_with_augmentations(
paths,
batch_size,
target_height,
target_width
) do paths
|> Enum.shuffle()
|> Task.async_stream(&parse_image/1) |> Stream.filter(fn
{:ok, {%StbImage{}, _}} -> true
_ -> false end)
|> Stream.map(&to_tensors(&1, target_height, target_width))
|> Stream.map(&random_flip(&1, :height))
|> Stream.map(&random_flip(&1, :width))
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn chunks ->
{img_chunk, label_chunk} = Enum.unzip(chunks)
{Nx.stack(img_chunk), Nx.stack(label_chunk)}
end)
end
defp random_flip({image, label}, axis) do
if :rand.uniform() < 0.5 do
{Nx.reverse(image, axes: [axis]), label}
else
{image, label}
end
end
defp parse_image(path) do
label = if String.contains?(path, "cat"), do: 0, else: 1
case StbImage.read_file(path) do
{:ok, img} -> {img, label}
_error -> :error
end
end
defp to_tensors({:ok, {img, label}}, target_height, target_width) do
img_tensor =
img
|> StbImage.resize(target_height, target_width)
|> StbImage.to_nx()
|> Nx.divide(255)
|> Nx.transpose(axes: [:channels, :height, :width])
label_tensor = Nx.tensor([label])
{img_tensor, label_tensor}
end
end
{test_paths, train_paths} =
Path.wildcard("train/*.jpg")
|> Enum.shuffle()
|> Enum.split(1000)
{test_paths, val_paths} = test_paths |> Enum.split(750)
batch_size = 32
target_height = 160
target_width = 160
train_pipeline = CatsAndDogs.pipeline_with_augmentations(
train_paths,
batch_size,
target_height,
target_width
)
val_pipeline = CatsAndDogs.pipeline(
val_paths,
batch_size,
target_height,
target_width
)
test_pipeline = CatsAndDogs.pipeline(
test_paths,
batch_size,
target_height,
target_width
)
Enum.take(train_pipeline, 1)
{cnn_base, cnn_base_params} = AxonOnnx.import(
"mobilenetv2-7.onnx", batch_size: batch_size
)
input_tempalte = Nx.template({1, 3, target_height, target_width}, :f32)
Axon.Display.as_graph(cnn_base, input_tempalte)
{_popped, cnn_base} = cnn_base |> Axon.pop_node()
{_popped, cnn_base} = cnn_base |> Axon.pop_node()
input_tempalte = Nx.template({1, 3, target_height, target_width}, :f32)
Axon.Display.as_graph(cnn_base, input_tempalte)
cnn_base = cnn_base |> Axon.namespace("feature_extractor")
cnn_base = cnn_base |> Axon.freeze()
{cnn_base, cnn_base_params} = AxonOnnx.import("mobilenetv2-7.onnx")
{_popped, cnn_base} = Axon.pop_node(cnn_base)
{_popped, cnn_base} = Axon.pop_node(cnn_base)
model =
cnn_base
|> Axon.namespace("feature_extractor")
|> Axon.freeze()
|> Axon.global_avg_pool(channels: :first) |> Axon.dropout(rate: 0.2)
|> Axon.dense(1)
loss = &Axon.Losses.binary_cross_entropy(&1, &2, reduction: :mean,
from_logits: true
)
optimizer = Axon.Optimizers.adam(1.0e-4)
trained_model_state =
model
|> Axon.Loop.trainer(loss, optimizer)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.validate(model, val_pipeline)
|> Axon.Loop.early_stop("validation_loss", mode: :min, patience: 5)
|> Axon.Loop.run(
train_pipeline,
%{"feature_extractor" => cnn_base_params}, epochs: 100,
compiler: EXLA
)
eval_model = model |> Axon.sigmoid()
eval_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, trained_model_state, compiler: EXLA)
model = model |> Axon.unfreeze(up: 50)
loss = &Axon.Losses.binary_cross_entropy(&1, &2,
reduction: :mean,
from_logits: true
)
optimizer = Axon.Optimizers.rmsprop(1.0e-5)
trained_model_state =
model
|> Axon.Loop.trainer(loss, optimizer)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.validate(model, val_pipeline)
|> Axon.Loop.early_stop("validation_loss", mode: :min, patience: 5)
|> Axon.Loop.run(
train_pipeline,
trained_model_state,
epochs: 100,
compiler: EXLA
)
eval_model = model |> Axon.sigmoid()
eval_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, trained_model_state, compoler: EXLA)