Plotting with VegaLite
Mix.install([
{:vega_lite, "~> 0.1.6"},
{:kino_vega_lite, "~> 0.1.10"}
])
Introduction
We need two libraries for plotting in Livebook:
-
The
vega_lite
package allows us to define our graph specifications -
The
kino_vega_lite
package instructs Livebook how to render our specifications
Let’s install them by running the setup cell above.
When building graphics we make extensive use of the functions from VegaLite
,
so it’s useful to alias the module as something shorter.
alias VegaLite, as: Vl
VegaLite
The Chart smart cell
Before we get into exploring all the various chart types, let’s have
a look at an awesome feature that comes with kino_vega_lite
- the
Chart smart cell!
Coding up a chart usually involves a couple steps. If you don’t know the API of a particular library, it may be a bit challenging. On the other hand, if you know the API in-and-out, it’s a rather repetitive task. That’s where the Chart smart cell comes in, it is a high-level UI that helps us write our chart code. It is great a tool for learning and for automating our workflows. Let’s give it a try!
First, we need some data to work with, here’s a small excerpt from the popular Iris dataset:
iris = [
%{"petal_length" => 5.1, "petal_width" => 1.9, "species" => "Iris-virginica"},
%{"petal_length" => 4.0, "petal_width" => 1.3, "species" => "Iris-versicolor"},
%{"petal_length" => 1.6, "petal_width" => 0.2, "species" => "Iris-setosa"},
%{"petal_length" => 1.6, "petal_width" => 0.2, "species" => "Iris-setosa"},
%{"petal_length" => 4.6, "petal_width" => 1.4, "species" => "Iris-versicolor"},
%{"petal_length" => 4.8, "petal_width" => 1.8, "species" => "Iris-virginica"},
%{"petal_length" => 5.6, "petal_width" => 2.2, "species" => "Iris-virginica"},
%{"petal_length" => 5.1, "petal_width" => 1.6, "species" => "Iris-versicolor"},
%{"petal_length" => 1.5, "petal_width" => 0.3, "species" => "Iris-setosa"},
%{"petal_length" => 4.5, "petal_width" => 1.6, "species" => "Iris-versicolor"}
]
:ok
:ok
Now, to insert a new Chart cell, place your cursor between cells, click on the + Smart button and select Chart.
You can see an example of that below. Click on the “Evaluate” button to see the chart, then see how it changes as you customize the parameters.
Vl.new(width: 400, height: 200, title: "Iris")
|> Vl.data_from_values(iris, only: ["petal_length", "petal_width", "species"])
|> Vl.mark(:point)
|> Vl.encode_field(:x, "petal_length", type: :quantitative)
|> Vl.encode_field(:y, "petal_width", type: :quantitative)
|> Vl.encode_field(:color, "species")
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"values":[{"petal_length":5.1,"petal_width":1.9,"species":"Iris-virginica"},{"petal_length":4.0,"petal_width":1.3,"species":"Iris-versicolor"},{"petal_length":1.6,"petal_width":0.2,"species":"Iris-setosa"},{"petal_length":1.6,"petal_width":0.2,"species":"Iris-setosa"},{"petal_length":4.6,"petal_width":1.4,"species":"Iris-versicolor"},{"petal_length":4.8,"petal_width":1.8,"species":"Iris-virginica"},{"petal_length":5.6,"petal_width":2.2,"species":"Iris-virginica"},{"petal_length":5.1,"petal_width":1.6,"species":"Iris-versicolor"},{"petal_length":1.5,"petal_width":0.3,"species":"Iris-setosa"},{"petal_length":4.5,"petal_width":1.6,"species":"Iris-versicolor"}]},"encoding":{"color":{"field":"species"},"x":{"field":"petal_length","type":"quantitative"},"y":{"field":"petal_width","type":"quantitative"}},"height":200,"mark":"point","title":"Iris","width":400}
Under cell actions there is a “Source” button, click on it to see the source code of your chart. You can even convert it to a regular Code cell for further adjustments!
The Chart smart cell is one of many Smart cells available in Livebook ⚡ Not only that, you can create your own Smart cells too, which we discuss in the Exploring Smart cells notebook!
Basic concepts
Composing a basic Vega-Lite graphic usually consists of the following steps:
# Initialize the specification, optionally with some top-level properties
Vl.new(width: 400, height: 400)
# Specify data source for the graphic using one of the data_from_* functions
|> Vl.data_from_values(iteration: 1..100, score: 1..100)
# Pick a visual mark
|> Vl.mark(:line)
# Map data fields to visual properties of the mark, in this case point positions
|> Vl.encode_field(:x, "iteration", type: :quantitative)
|> Vl.encode_field(:y, "score", type: :quantitative)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"values":[{"iteration":1,"score":1},{"iteration":2,"score":2},{"iteration":3,"score":3},{"iteration":4,"score":4},{"iteration":5,"score":5},{"iteration":6,"score":6},{"iteration":7,"score":7},{"iteration":8,"score":8},{"iteration":9,"score":9},{"iteration":10,"score":10},{"iteration":11,"score":11},{"iteration":12,"score":12},{"iteration":13,"score":13},{"iteration":14,"score":14},{"iteration":15,"score":15},{"iteration":16,"score":16},{"iteration":17,"score":17},{"iteration":18,"score":18},{"iteration":19,"score":19},{"iteration":20,"score":20},{"iteration":21,"score":21},{"iteration":22,"score":22},{"iteration":23,"score":23},{"iteration":24,"score":24},{"iteration":25,"score":25},{"iteration":26,"score":26},{"iteration":27,"score":27},{"iteration":28,"score":28},{"iteration":29,"score":29},{"iteration":30,"score":30},{"iteration":31,"score":31},{"iteration":32,"score":32},{"iteration":33,"score":33},{"iteration":34,"score":34},{"iteration":35,"score":35},{"iteration":36,"score":36},{"iteration":37,"score":37},{"iteration":38,"score":38},{"iteration":39,"score":39},{"iteration":40,"score":40},{"iteration":41,"score":41},{"iteration":42,"score":42},{"iteration":43,"score":43},{"iteration":44,"score":44},{"iteration":45,"score":45},{"iteration":46,"score":46},{"iteration":47,"score":47},{"iteration":48,"score":48},{"iteration":49,"score":49},{"iteration":50,"score":50},{"iteration":51,"score":51},{"iteration":52,"score":52},{"iteration":53,"score":53},{"iteration":54,"score":54},{"iteration":55,"score":55},{"iteration":56,"score":56},{"iteration":57,"score":57},{"iteration":58,"score":58},{"iteration":59,"score":59},{"iteration":60,"score":60},{"iteration":61,"score":61},{"iteration":62,"score":62},{"iteration":63,"score":63},{"iteration":64,"score":64},{"iteration":65,"score":65},{"iteration":66,"score":66},{"iteration":67,"score":67},{"iteration":68,"score":68},{"iteration":69,"score":69},{"iteration":70,"score":70},{"iteration":71,"score":71},{"iteration":72,"score":72},{"iteration":73,"score":73},{"iteration":74,"score":74},{"iteration":75,"score":75},{"iteration":76,"score":76},{"iteration":77,"score":77},{"iteration":78,"score":78},{"iteration":79,"score":79},{"iteration":80,"score":80},{"iteration":81,"score":81},{"iteration":82,"score":82},{"iteration":83,"score":83},{"iteration":84,"score":84},{"iteration":85,"score":85},{"iteration":86,"score":86},{"iteration":87,"score":87},{"iteration":88,"score":88},{"iteration":89,"score":89},{"iteration":90,"score":90},{"iteration":91,"score":91},{"iteration":92,"score":92},{"iteration":93,"score":93},{"iteration":94,"score":94},{"iteration":95,"score":95},{"iteration":96,"score":96},{"iteration":97,"score":97},{"iteration":98,"score":98},{"iteration":99,"score":99},{"iteration":100,"score":100}]},"encoding":{"x":{"field":"iteration","type":"quantitative"},"y":{"field":"score","type":"quantitative"}},"height":400,"mark":"line","width":400}
Below you can find a number of example graphics for common use cases. For a number of plain Vega-Lite examples you can look here.
Bar charts
Simple bar chart
A bar chart encodes quantitative values as the length of regular bars.
# Source: https://vega.github.io/vega-lite/examples/bar.html
data = [
%{"a" => "A", "b" => 28},
%{"a" => "B", "b" => 55},
%{"a" => "C", "b" => 43},
%{"a" => "D", "b" => 91},
%{"a" => "E", "b" => 81},
%{"a" => "F", "b" => 53},
%{"a" => "G", "b" => 19},
%{"a" => "H", "b" => 87},
%{"a" => "I", "b" => 52}
]
Vl.new(width: 400, height: 300)
|> Vl.data_from_values(data)
|> Vl.mark(:bar)
|> Vl.encode_field(:x, "a", type: :nominal, axis: [label_angle: 0])
|> Vl.encode_field(:y, "b", type: :quantitative)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"values":[{"a":"A","b":28},{"a":"B","b":55},{"a":"C","b":43},{"a":"D","b":91},{"a":"E","b":81},{"a":"F","b":53},{"a":"G","b":19},{"a":"H","b":87},{"a":"I","b":52}]},"encoding":{"x":{"axis":{"labelAngle":0},"field":"a","type":"nominal"},"y":{"field":"b","type":"quantitative"}},"height":300,"mark":"bar","width":400}
Stacked bar chart
A stacked bar chart contains multi-color bars to represent several quantitative values at once.
# Source: https://vega.github.io/vega-lite/examples/stacked_bar_weather.html
Vl.new(width: 300, height: 200)
|> Vl.data_from_url("https://vega.github.io/editor/data/seattle-weather.csv")
|> Vl.mark(:bar)
|> Vl.encode_field(:x, "date", time_unit: :month, type: :ordinal, title: "Month of the year")
|> Vl.encode(:y, aggregate: :count, type: :quantitative, title: "Number of days")
|> Vl.encode_field(:color, "weather",
type: :nominal,
title: "Weather type",
scale: [
domain: ["sun", "fog", "drizzle", "rain", "snow"],
range: ["#e7ba52", "#c7c7c7", "#aec7e8", "#1f77b4", "#9467bd"]
]
)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/seattle-weather.csv"},"encoding":{"color":{"field":"weather","scale":{"domain":["sun","fog","drizzle","rain","snow"],"range":["#e7ba52","#c7c7c7","#aec7e8","#1f77b4","#9467bd"]},"title":"Weather type","type":"nominal"},"x":{"field":"date","timeUnit":"month","title":"Month of the year","type":"ordinal"},"y":{"aggregate":"count","title":"Number of days","type":"quantitative"}},"height":200,"mark":"bar","width":300}
Grouped bar chart
Graphing one bar plot per group.
# Source: https://vega.github.io/vega-lite/examples/bar_grouped.html
Vl.new(width: [step: 12])
|> Vl.data_from_url("https://vega.github.io/editor/data/population.json")
|> Vl.transform(filter: "datum.year == 2000")
|> Vl.transform(calculate: "datum.sex == 2 ? 'Female' : 'Male'", as: "gender")
|> Vl.mark(:bar)
|> Vl.encode_field(:column, "age", type: :ordinal, spacing: 10)
|> Vl.encode_field(:y, "people", aggregate: :sum, title: "population", axis: [grid: false])
|> Vl.encode_field(:x, "gender", title: nil)
|> Vl.encode_field(:color, "gender")
|> Vl.config(view: [stroke: nil])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","config":{"view":{"stroke":null}},"data":{"url":"https://vega.github.io/editor/data/population.json"},"encoding":{"color":{"field":"gender"},"column":{"field":"age","spacing":10,"type":"ordinal"},"x":{"field":"gender","title":null},"y":{"aggregate":"sum","axis":{"grid":false},"field":"people","title":"population"}},"mark":"bar","transform":[{"filter":"datum.year == 2000"},{"as":"gender","calculate":"datum.sex == 2 ? 'Female' : 'Male'"}],"width":{"step":12}}
Histograms, density plots and dot plots
Histogram
A histogram represents the value frequency in predefined intervals.
# Source: https://vega.github.io/vega-lite/examples/histogram.html
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/movies.json")
|> Vl.mark(:bar)
|> Vl.encode_field(:x, "IMDB Rating", bin: true)
|> Vl.encode(:y, aggregate: :count)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/movies.json"},"encoding":{"x":{"bin":true,"field":"IMDB Rating"},"y":{"aggregate":"count"}},"mark":"bar"}
Density plot
A density plot represents the distribution estimate of a numeric value.
# Source: https://vega.github.io/vega-lite/examples/area_density.html
Vl.new(width: 400, height: 100)
|> Vl.data_from_url("https://vega.github.io/editor/data/movies.json")
|> Vl.transform(density: "IMDB Rating")
|> Vl.mark(:area)
|> Vl.encode_field(:x, "value", type: :quantitative, title: "IMDB rating")
|> Vl.encode_field(:y, "density", type: :quantitative)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/movies.json"},"encoding":{"x":{"field":"value","title":"IMDB rating","type":"quantitative"},"y":{"field":"density","type":"quantitative"}},"height":100,"mark":"area","transform":[{"density":"IMDB Rating"}],"width":400}
Stacked density estimates
Several density plots stacked together.
# Source: https://vega.github.io/vega-lite/examples/area_density_stacked.html
Vl.new(width: 400, height: 80)
|> Vl.data_from_url("https://vega.github.io/editor/data/penguins.json")
|> Vl.transform(density: "Body Mass (g)", groupby: ["Species"], extent: [2500, 6500])
|> Vl.mark(:area)
|> Vl.encode_field(:x, "value", type: :quantitative, title: "Body mass (g)")
|> Vl.encode_field(:y, "density", type: :quantitative, stack: true)
|> Vl.encode_field(:color, "Species", type: :nominal)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/penguins.json"},"encoding":{"color":{"field":"Species","type":"nominal"},"x":{"field":"value","title":"Body mass (g)","type":"quantitative"},"y":{"field":"density","stack":true,"type":"quantitative"}},"height":80,"mark":"area","transform":[{"density":"Body Mass (g)","extent":[2500,6500],"groupby":["Species"]}],"width":400}
2D Histogram scatterplot
A 2D version of a regular histogram, with intervals in both axis and frequency represented by point size.
# Source: https://vega.github.io/vega-lite/examples/circle_binned.html
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/movies.json")
|> Vl.mark(:circle)
|> Vl.encode_field(:x, "IMDB Rating", bin: [maxbins: 10])
|> Vl.encode_field(:y, "Rotten Tomatoes Rating", bin: [maxbins: 10])
|> Vl.encode(:size, aggregate: :count)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/movies.json"},"encoding":{"size":{"aggregate":"count"},"x":{"bin":{"maxbins":10},"field":"IMDB Rating"},"y":{"bin":{"maxbins":10},"field":"Rotten Tomatoes Rating"}},"mark":"circle"}
2D Histogram heatmap
Another version of 2D histogram, with color scale representing value frequency.
# Source: https://vega.github.io/vega-lite/examples/rect_binned_heatmap.html
Vl.new(width: 300, height: 200)
|> Vl.data_from_url("https://vega.github.io/editor/data/movies.json")
|> Vl.transform(
filter: [
and: [
[field: "IMDB Rating", valid: true],
[field: "Rotten Tomatoes Rating", valid: true]
]
]
)
|> Vl.mark(:rect)
|> Vl.encode_field(:x, "IMDB Rating", bin: [maxbins: 60])
|> Vl.encode_field(:y, "Rotten Tomatoes Rating", bin: [maxbins: 40])
|> Vl.encode(:color, aggregate: :count)
|> Vl.config(view: [stroke: nil])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","config":{"view":{"stroke":null}},"data":{"url":"https://vega.github.io/editor/data/movies.json"},"encoding":{"color":{"aggregate":"count"},"x":{"bin":{"maxbins":60},"field":"IMDB Rating"},"y":{"bin":{"maxbins":40},"field":"Rotten Tomatoes Rating"}},"height":200,"mark":"rect","transform":[{"filter":{"and":[{"field":"IMDB Rating","valid":true},{"field":"Rotten Tomatoes Rating","valid":true}]}}],"width":300}
2D Ordinal heatmap
A heatmap similar to the above, but with already discrete categories.
# Source: https://vega.github.io/vega-lite/examples/rect_heatmap_weather.html
Vl.new(title: "Daily max temperatures (C) in Seattle, WA")
|> Vl.data_from_url("https://vega.github.io/editor/data/seattle-weather.csv")
|> Vl.mark(:rect)
|> Vl.encode_field(:x, "date",
time_unit: :date,
type: :ordinal,
title: "Day",
axis: [label_angle: 0, format: "%e"]
)
|> Vl.encode_field(:y, "date",
time_unit: :month,
type: :ordinal,
title: "Month"
)
|> Vl.encode_field(:color, "temp_max",
aggregate: :max,
type: :quantitative,
legend: [title: nil]
)
|> Vl.config(view: [stroke: nil])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","config":{"view":{"stroke":null}},"data":{"url":"https://vega.github.io/editor/data/seattle-weather.csv"},"encoding":{"color":{"aggregate":"max","field":"temp_max","legend":{"title":null},"type":"quantitative"},"x":{"axis":{"format":"%e","labelAngle":0},"field":"date","timeUnit":"date","title":"Day","type":"ordinal"},"y":{"field":"date","timeUnit":"month","title":"Month","type":"ordinal"}},"mark":"rect","title":"Daily max temperatures (C) in Seattle, WA"}
Scatter and strip plots
Scatterplot
A scatterplot represents 2D data directly as geometric points.
# Source: https://vega.github.io/vega-lite/examples/point_2d.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/cars.json")
|> Vl.mark(:point)
|> Vl.encode_field(:x, "Horsepower", type: :quantitative)
|> Vl.encode_field(:y, "Miles_per_Gallon", type: :quantitative)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/cars.json"},"encoding":{"x":{"field":"Horsepower","type":"quantitative"},"y":{"field":"Miles_per_Gallon","type":"quantitative"}},"height":300,"mark":"point","width":400}
Strip plot
Shows the relationship between two values using tick marks.
# Source: https://vega.github.io/vega-lite/examples/tick_strip.html
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/cars.json")
|> Vl.mark(:tick)
|> Vl.encode_field(:x, "Horsepower", type: :quantitative)
|> Vl.encode_field(:y, "Cylinders", type: :ordinal)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/cars.json"},"encoding":{"x":{"field":"Horsepower","type":"quantitative"},"y":{"field":"Cylinders","type":"ordinal"}},"mark":"tick"}
Colored scatterplot
Scatterplot with clear point groups.
# Source: https://vega.github.io/vega-lite/examples/point_color_with_shape.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/penguins.json")
|> Vl.mark(:point)
|> Vl.encode_field(:x, "Flipper Length (mm)", type: :quantitative, scale: [zero: false])
|> Vl.encode_field(:y, "Body Mass (g)", type: :quantitative, scale: [zero: false])
|> Vl.encode_field(:color, "Species", type: :nominal)
|> Vl.encode_field(:shape, "Species", type: :nominal)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/penguins.json"},"encoding":{"color":{"field":"Species","type":"nominal"},"shape":{"field":"Species","type":"nominal"},"x":{"field":"Flipper Length (mm)","scale":{"zero":false},"type":"quantitative"},"y":{"field":"Body Mass (g)","scale":{"zero":false},"type":"quantitative"}},"height":300,"mark":"point","width":400}
Line charts
Line chart
A simple chart resulting from linking individual points.
# Source: https://vega.github.io/vega-lite/examples/line.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/stocks.csv")
|> Vl.transform(filter: "datum.symbol == 'GOOG'")
|> Vl.mark(:line)
|> Vl.encode_field(:x, "date", type: :temporal)
|> Vl.encode_field(:y, "price", type: :quantitative)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/stocks.csv"},"encoding":{"x":{"field":"date","type":"temporal"},"y":{"field":"price","type":"quantitative"}},"height":300,"mark":"line","transform":[{"filter":"datum.symbol == 'GOOG'"}],"width":400}
Multi series line chart
Multiple line charts combined together.
# Source: https://vega.github.io/vega-lite/examples/line_color.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/stocks.csv")
|> Vl.mark(:line)
|> Vl.encode_field(:x, "date", type: :temporal)
|> Vl.encode_field(:y, "price", type: :quantitative)
|> Vl.encode_field(:color, "symbol", type: :nominal)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/stocks.csv"},"encoding":{"color":{"field":"symbol","type":"nominal"},"x":{"field":"date","type":"temporal"},"y":{"field":"price","type":"quantitative"}},"height":300,"mark":"line","width":400}
Line chart with point markers
Marking individual points on top of the line.
# Source: https://vega.github.io/vega-lite/examples/line_color.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/stocks.csv")
|> Vl.mark(:line, point: true)
|> Vl.encode_field(:x, "date", time_unit: :year, type: :temporal)
|> Vl.encode_field(:y, "price", aggregate: :mean, type: :quantitative)
|> Vl.encode_field(:color, "symbol", type: :nominal)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/stocks.csv"},"encoding":{"color":{"field":"symbol","type":"nominal"},"x":{"field":"date","timeUnit":"year","type":"temporal"},"y":{"aggregate":"mean","field":"price","type":"quantitative"}},"height":300,"mark":{"point":true,"type":"line"},"width":400}
Sequence generators
Line charts using generated data.
# Source: https://vega.github.io/vega-lite/examples/sequence_line_fold.html
Vl.new(width: 300, height: 150)
|> Vl.data(sequence: [start: 0, stop: 12.7, step: 0.1, as: "x"])
|> Vl.transform(calculate: "sin(datum.x)", as: "sin(x)")
|> Vl.transform(calculate: "cos(datum.x)", as: "cos(x)")
|> Vl.transform(fold: ["sin(x)", "cos(x)"])
|> Vl.mark(:line)
|> Vl.encode_field(:x, "x", type: :quantitative)
|> Vl.encode_field(:y, "value", type: :quantitative)
|> Vl.encode_field(:color, "key", type: :nominal, title: nil)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"sequence":{"as":"x","start":0,"step":0.1,"stop":12.7}},"encoding":{"color":{"field":"key","title":null,"type":"nominal"},"x":{"field":"x","type":"quantitative"},"y":{"field":"value","type":"quantitative"}},"height":150,"mark":"line","transform":[{"as":"sin(x)","calculate":"sin(datum.x)"},{"as":"cos(x)","calculate":"cos(datum.x)"},{"fold":["sin(x)","cos(x)"]}],"width":300}
Area charts and streamgraphs
Area chart
An area chart represents quantitative data and is based on line chart.
# Source: https://vega.github.io/vega-lite/examples/area.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/unemployment-across-industries.json")
|> Vl.mark(:area)
|> Vl.encode_field(:x, "date", time_unit: :yearmonth, axis: [format: "%Y"])
|> Vl.encode_field(:y, "count", aggregate: :sum, title: "count")
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/unemployment-across-industries.json"},"encoding":{"x":{"axis":{"format":"%Y"},"field":"date","timeUnit":"yearmonth"},"y":{"aggregate":"sum","field":"count","title":"count"}},"height":300,"mark":"area","width":400}
Stacked area chart
A combination of multiple area charts allowing for easy visual comparison.
# Source: https://vega.github.io/vega-lite/examples/stacked_area.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/unemployment-across-industries.json")
|> Vl.mark(:area)
|> Vl.encode_field(:x, "date", time_unit: :yearmonth, axis: [format: "%Y"])
|> Vl.encode_field(:y, "count", aggregate: :sum, title: "count")
|> Vl.encode_field(:color, "series", scale: [scheme: "category20b"])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/unemployment-across-industries.json"},"encoding":{"color":{"field":"series","scale":{"scheme":"category20b"}},"x":{"axis":{"format":"%Y"},"field":"date","timeUnit":"yearmonth"},"y":{"aggregate":"sum","field":"count","title":"count"}},"height":300,"mark":"area","width":400}
Streamgraph
A streamgraph is a type of area chart which is displaced around a central axis.
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/unemployment-across-industries.json")
|> Vl.mark(:area)
|> Vl.encode_field(:x, "date", time_unit: :yearmonth, axis: [format: "%Y"])
|> Vl.encode_field(:y, "count", aggregate: :sum, axis: nil, stack: :center)
|> Vl.encode_field(:color, "series", scale: [scheme: "category20b"])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/unemployment-across-industries.json"},"encoding":{"color":{"field":"series","scale":{"scheme":"category20b"}},"x":{"axis":{"format":"%Y"},"field":"date","timeUnit":"yearmonth"},"y":{"aggregate":"sum","axis":null,"field":"count","stack":"center"}},"height":300,"mark":"area","width":400}
Circular plots
Pie chart
A pie chart encodes proportional differences among a set of numeric values as the angular extent and area of a circular slice.
data = [
%{"category" => 1, "value" => 4},
%{"category" => 2, "value" => 6},
%{"category" => 3, "value" => 10},
%{"category" => 4, "value" => 3},
%{"category" => 5, "value" => 7},
%{"category" => 6, "value" => 8}
]
Vl.new()
|> Vl.data_from_values(data)
|> Vl.mark(:arc)
|> Vl.encode_field(:theta, "value", type: :quantitative)
|> Vl.encode_field(:color, "category", type: :nominal)
|> Vl.config(view: [stroke: nil])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","config":{"view":{"stroke":null}},"data":{"values":[{"category":1,"value":4},{"category":2,"value":6},{"category":3,"value":10},{"category":4,"value":3},{"category":5,"value":7},{"category":6,"value":8}]},"encoding":{"color":{"field":"category","type":"nominal"},"theta":{"field":"value","type":"quantitative"}},"mark":"arc"}
Radial plot
This radial plot uses both angular and radial extent to convey multiple dimensions of data. However, this approach is not perceptually effective, as viewers will most likely be drawn to the total area of the shape, conflating the two dimensions.
# Source: https://vega.github.io/vega-lite/examples/arc_radial.html
Vl.new()
|> Vl.data_from_values(data: [12, 23, 47, 6, 52, 19])
|> Vl.encode_field(:theta, "data", type: :quantitative, stack: true)
|> Vl.encode_field(:radius, "data", scale: [type: :sqrt, zero: true, range_min: 20])
|> Vl.encode_field(:color, "data", type: :nominal, legend: nil)
|> Vl.layers([
Vl.new()
|> Vl.mark(:arc, inner_radius: 20, stroke: "#fff"),
Vl.new()
|> Vl.mark(:text, radius_offset: 10)
|> Vl.encode_field(:text, "data", type: :quantitative)
])
|> Vl.config(view: [stroke: nil])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","config":{"view":{"stroke":null}},"data":{"values":[{"data":12},{"data":23},{"data":47},{"data":6},{"data":52},{"data":19}]},"encoding":{"color":{"field":"data","legend":null,"type":"nominal"},"radius":{"field":"data","scale":{"rangeMin":20,"type":"sqrt","zero":true}},"theta":{"field":"data","stack":true,"type":"quantitative"}},"layer":[{"mark":{"innerRadius":20,"stroke":"#fff","type":"arc"}},{"encoding":{"text":{"field":"data","type":"quantitative"}},"mark":{"radiusOffset":10,"type":"text"}}]}
Calculations
Layering rolling averages over raw values
Raw value points and a calculated rolling average on top.
# Source: https://vega.github.io/vega-lite/examples/layer_line_rolling_mean_point_raw.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/seattle-weather.csv")
|> Vl.transform(
window: [
[field: "temp_max", op: :mean, as: "rolling_mean"]
],
frame: [-15, 15]
)
|> Vl.encode_field(:x, "date", type: :temporal, title: "Date", opacity: 0.3)
|> Vl.layers([
Vl.new()
|> Vl.mark(:point, opacity: 0.3)
|> Vl.encode_field(:y, "temp_max", type: :quantitative),
Vl.new()
|> Vl.mark(:line, color: :red, size: 3)
|> Vl.encode_field(:y, "rolling_mean",
type: :quantitative,
title: "Rolling mean of max temperature"
)
])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/seattle-weather.csv"},"encoding":{"x":{"field":"date","opacity":0.3,"title":"Date","type":"temporal"}},"height":300,"layer":[{"encoding":{"y":{"field":"temp_max","type":"quantitative"}},"mark":{"opacity":0.3,"type":"point"}},{"encoding":{"y":{"field":"rolling_mean","title":"Rolling mean of max temperature","type":"quantitative"}},"mark":{"color":"red","size":3,"type":"line"}}],"transform":[{"frame":[-15,15],"window":[{"as":"rolling_mean","field":"temp_max","op":"mean"}]}],"width":400}
Linear regression
Linear regression is an approach of finding a line that best represents the relationship in the data.
# Source: https://vega.github.io/vega-lite/examples/layer_point_line_regression.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/movies.json")
|> Vl.layers([
Vl.new()
|> Vl.mark(:point, filled: true)
|> Vl.encode_field(:x, "Rotten Tomatoes Rating", type: :quantitative)
|> Vl.encode_field(:y, "IMDB Rating", type: :quantitative),
Vl.new()
|> Vl.mark(:line, color: :firebrick)
|> Vl.transform(regression: "IMDB Rating", on: "Rotten Tomatoes Rating")
|> Vl.encode_field(:x, "Rotten Tomatoes Rating", type: :quantitative)
|> Vl.encode_field(:y, "IMDB Rating", type: :quantitative)
])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/movies.json"},"height":300,"layer":[{"encoding":{"x":{"field":"Rotten Tomatoes Rating","type":"quantitative"},"y":{"field":"IMDB Rating","type":"quantitative"}},"mark":{"filled":true,"type":"point"}},{"encoding":{"x":{"field":"Rotten Tomatoes Rating","type":"quantitative"},"y":{"field":"IMDB Rating","type":"quantitative"}},"mark":{"color":"firebrick","type":"line"},"transform":[{"on":"Rotten Tomatoes Rating","regression":"IMDB Rating"}]}],"width":400}
Composite marks
Error bars showing standard deviation
Adding observations standard deviation alongside the mean point.
# Source: https://vega.github.io/vega-lite/examples/layer_point_errorbar_ci.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/barley.json")
|> Vl.encode_field(:y, "variety", type: :ordinal)
|> Vl.layers([
Vl.new()
|> Vl.mark(:point, filled: true)
|> Vl.encode_field(:x, "yield",
aggregate: :mean,
type: :quantitative,
scale: [zero: false],
title: "Barley yield"
)
|> Vl.encode(:color, value: :black),
Vl.new()
|> Vl.mark(:errorbar, extent: :stdev)
|> Vl.encode_field(:x, "yield", type: :quantitative, title: "Barley yield")
])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/barley.json"},"encoding":{"y":{"field":"variety","type":"ordinal"}},"height":300,"layer":[{"encoding":{"color":{"value":"black"},"x":{"aggregate":"mean","field":"yield","scale":{"zero":false},"title":"Barley yield","type":"quantitative"}},"mark":{"filled":true,"type":"point"}},{"encoding":{"x":{"field":"yield","title":"Barley yield","type":"quantitative"}},"mark":{"extent":"stdev","type":"errorbar"}}],"width":400}
Line chart with confidence interval band
Line with confidence band, which represents the uncertainty of an estimate function.
# Source: https://vega.github.io/vega-lite/examples/layer_line_errorband_ci.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/cars.json")
|> Vl.encode_field(:x, "Year", time_unit: :year)
|> Vl.layers([
Vl.new()
|> Vl.mark(:errorband, extent: :ci)
|> Vl.encode_field(:y, "Miles_per_Gallon",
type: :quantitative,
title: "Mean of miles per gallon (95% CIs)"
),
Vl.new()
|> Vl.mark(:line)
|> Vl.encode_field(:y, "Miles_per_Gallon", aggregate: :mean)
])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/cars.json"},"encoding":{"x":{"field":"Year","timeUnit":"year"}},"height":300,"layer":[{"encoding":{"y":{"field":"Miles_per_Gallon","title":"Mean of miles per gallon (95% CIs)","type":"quantitative"}},"mark":{"extent":"ci","type":"errorband"}},{"encoding":{"y":{"aggregate":"mean","field":"Miles_per_Gallon"}},"mark":"line"}],"width":400}
Box plots
Box plot with min/max whiskers
A vertical box plot showing median, min, and max values.
# Source: https://vega.github.io/vega-lite/examples/boxplot_minmax_2D_vertical.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/penguins.json")
|> Vl.mark(:boxplot, extent: "min-max")
|> Vl.encode_field(:x, "Species", type: :nominal)
|> Vl.encode_field(:color, "Species", type: :nominal, legend: nil)
|> Vl.encode_field(:y, "Body Mass (g)", type: :quantitative, scale: [zero: false])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/penguins.json"},"encoding":{"color":{"field":"Species","legend":null,"type":"nominal"},"x":{"field":"Species","type":"nominal"},"y":{"field":"Body Mass (g)","scale":{"zero":false},"type":"quantitative"}},"height":300,"mark":{"extent":"min-max","type":"boxplot"},"width":400}
Faceting
Trellis bar chart
Trellis display is a series of graphs with the same scale and axes split according to some criteria, so that they are easy to compare.
# Source: https://vega.github.io/vega-lite/examples/trellis_bar.html
Vl.new(width: [step: 17])
|> Vl.data_from_url("https://vega.github.io/editor/data/population.json")
|> Vl.transform(filter: "datum.year == 2000")
|> Vl.transform(calculate: "datum.sex == 2 ? 'Female' : 'Male'", as: "gender")
|> Vl.mark(:bar)
|> Vl.encode_field(:row, "gender")
|> Vl.encode_field(:x, "age")
|> Vl.encode_field(:y, "people", aggregate: :sum, title: "population")
|> Vl.encode_field(:color, "gender")
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/population.json"},"encoding":{"color":{"field":"gender"},"row":{"field":"gender"},"x":{"field":"age"},"y":{"aggregate":"sum","field":"people","title":"population"}},"mark":"bar","transform":[{"filter":"datum.year == 2000"},{"as":"gender","calculate":"datum.sex == 2 ? 'Female' : 'Male'"}],"width":{"step":17}}
Trellis area chart
Similar to the above, except for area charts.
# Source: https://vega.github.io/vega-lite/examples/trellis_area.html
Vl.new(width: 400, height: 60)
|> Vl.data_from_url("https://vega.github.io/editor/data/stocks.csv")
|> Vl.transform(filter: "datum.symbol !== 'GOOG'")
|> Vl.mark(:area)
|> Vl.encode_field(:x, "date", type: :temporal, axis: [grid: false])
|> Vl.encode_field(:y, "price", type: :quantitative, axis: [grid: false])
|> Vl.encode_field(:color, "symbol", type: :nominal, legend: nil)
|> Vl.encode_field(:row, "symbol", type: :nominal, title: "Symbol")
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/stocks.csv"},"encoding":{"color":{"field":"symbol","legend":null,"type":"nominal"},"row":{"field":"symbol","title":"Symbol","type":"nominal"},"x":{"axis":{"grid":false},"field":"date","type":"temporal"},"y":{"axis":{"grid":false},"field":"price","type":"quantitative"}},"height":60,"mark":"area","transform":[{"filter":"datum.symbol !== 'GOOG'"}],"width":400}
Trellis multi-level scatterplot
Again, the trellis display, but this time for scatterplot and grouped data.
# Source: https://vega.github.io/vega-lite/examples/trellis_barley.html
Vl.new(name: "Trellis Barley", height: [step: 12])
|> Vl.data_from_url("https://vega.github.io/editor/data/barley.json")
|> Vl.mark(:point)
|> Vl.encode_field(:facet, "site",
type: :ordinal,
columns: 2,
sort: [op: :median, field: "yield"]
)
|> Vl.encode_field(:x, "yield", aggregate: :median, type: :quantitative, scale: [zero: false])
|> Vl.encode_field(:y, "variety", type: :ordinal, sort: "-x")
|> Vl.encode_field(:color, "year", type: :nominal)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/barley.json"},"encoding":{"color":{"field":"year","type":"nominal"},"facet":{"columns":2,"field":"site","sort":{"field":"yield","op":"median"},"type":"ordinal"},"x":{"aggregate":"median","field":"yield","scale":{"zero":false},"type":"quantitative"},"y":{"field":"variety","sort":"-x","type":"ordinal"}},"height":{"step":12},"mark":"point","name":"Trellis Barley"}
Repeated graphics
Repeated layer
A multi-layer chart composed by repeating the same specification over several fields.
# Source: https://vega.github.io/vega-lite/examples/repeat_layer.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/movies.json")
|> Vl.repeat(
[layer: ["US Gross", "Worldwide Gross"]],
Vl.new()
|> Vl.mark(:line)
|> Vl.encode_field(:x, "IMDB Rating", bin: true, type: :quantitative)
|> Vl.encode_repeat(:y, :layer,
aggregate: :mean,
type: :quantitative,
title: "Mean of US and Worldwide Gross"
)
|> Vl.encode(:color, datum: [repeat: :layer], type: :nominal)
)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/movies.json"},"height":300,"repeat":{"layer":["US Gross","Worldwide Gross"]},"spec":{"encoding":{"color":{"datum":{"repeat":"layer"},"type":"nominal"},"x":{"bin":true,"field":"IMDB Rating","type":"quantitative"},"y":{"aggregate":"mean","field":{"repeat":"layer"},"title":"Mean of US and Worldwide Gross","type":"quantitative"}},"mark":"line"},"width":400}
Repeated figure
A multi-view chart composed by repeating the same specification over several fields.
# Source: https://vega.github.io/vega-lite/docs/repeat.html#repeated-line-charts
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/weather.csv")
|> Vl.repeat(
["temp_max", "precipitation", "wind"],
Vl.new()
|> Vl.mark(:line)
|> Vl.encode_field(:x, "date", time_unit: :month)
|> Vl.encode_repeat(:y, :repeat, aggregate: :mean)
|> Vl.encode_field(:color, "location")
)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/weather.csv"},"repeat":["temp_max","precipitation","wind"],"spec":{"encoding":{"color":{"field":"location"},"x":{"field":"date","timeUnit":"month"},"y":{"aggregate":"mean","field":{"repeat":"repeat"}}},"mark":"line"}}
Scatterplot Matrix (SPLOM)
Scatterplot matrix (SPLOM) is a series of graphics for different pairs of variables, it’s useful to determine possible correlation between some variables.
# Source: https://vega.github.io/vega-lite/docs/repeat.html#scatterplot-matrix-splom
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/penguins.json")
|> Vl.repeat(
[
row: [
"Beak Length (mm)",
"Beak Depth (mm)",
"Flipper Length (mm)",
"Body Mass (g)"
],
column: [
"Body Mass (g)",
"Flipper Length (mm)",
"Beak Depth (mm)",
"Beak Length (mm)"
]
],
Vl.new(width: 150, height: 150)
|> Vl.mark(:point)
|> Vl.encode_repeat(:x, :column, type: :quantitative, scale: [zero: false])
|> Vl.encode_repeat(:y, :row, type: :quantitative, scale: [zero: false])
|> Vl.encode_field(:color, "Species", type: :nominal)
)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/penguins.json"},"repeat":{"column":["Body Mass (g)","Flipper Length (mm)","Beak Depth (mm)","Beak Length (mm)"],"row":["Beak Length (mm)","Beak Depth (mm)","Flipper Length (mm)","Body Mass (g)"]},"spec":{"encoding":{"color":{"field":"Species","type":"nominal"},"x":{"field":{"repeat":"column"},"scale":{"zero":false},"type":"quantitative"},"y":{"field":{"repeat":"row"},"scale":{"zero":false},"type":"quantitative"}},"height":150,"mark":"point","width":150}}
Layering
Layered charts with separate scales
Layered charts may concern variables of different units and scales, in which case we can display the scales separately.
# Source: https://vega.github.io/vega-lite/docs/layer.html#combined-scales-and-guides
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/weather.csv")
|> Vl.transform(filter: "datum.location == 'Seattle'")
|> Vl.encode_field(:x, "date", time_unit: :month, axis: [format: "%b", title: nil])
|> Vl.layers([
Vl.new()
|> Vl.mark(:area, opacity: 0.3, color: "#85C5A6")
|> Vl.encode_field(:y, "temp_max",
aggregate: :average,
scale: [domain: [0, 30]],
title: "Avg. Temperature (°C)",
axis: [title_color: "#85C5A6"]
)
|> Vl.encode_field(:y2, "temp_min", aggregate: :average),
Vl.new()
|> Vl.mark(:line, interpolate: :monotone, stroke: "#85A9C5")
|> Vl.encode_field(:y, "precipitation",
aggregate: :average,
title: "Precipitation (inches)",
axis: [title_color: "#85A9C5"]
)
])
|> Vl.resolve(:scale, y: :independent)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/weather.csv"},"encoding":{"x":{"axis":{"format":"%b","title":null},"field":"date","timeUnit":"month"}},"height":300,"layer":[{"encoding":{"y":{"aggregate":"average","axis":{"titleColor":"#85C5A6"},"field":"temp_max","scale":{"domain":[0,30]},"title":"Avg. Temperature (°C)"},"y2":{"aggregate":"average","field":"temp_min"}},"mark":{"color":"#85C5A6","opacity":0.3,"type":"area"}},{"encoding":{"y":{"aggregate":"average","axis":{"titleColor":"#85A9C5"},"field":"precipitation","title":"Precipitation (inches)"}},"mark":{"interpolate":"monotone","stroke":"#85A9C5","type":"line"}}],"resolve":{"scale":{"y":"independent"}},"transform":[{"filter":"datum.location == 'Seattle'"}],"width":400}
Concatenation
Arbitrary charts
You can concatenate arbitrary charts, but it’s most useful if they concern the same data.
# Source: https://vega.github.io/vega-lite/examples/vconcat_weather.html
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/weather.csv")
|> Vl.transform(filter: "datum.location == 'Seattle'")
|> Vl.concat(
[
Vl.new()
|> Vl.mark(:bar)
|> Vl.encode_field(:x, "date", time_unit: :month, type: :ordinal)
|> Vl.encode_field(:y, "precipitation", aggregate: :mean),
Vl.new()
|> Vl.mark(:point)
|> Vl.encode_field(:x, "temp_min", bin: true)
|> Vl.encode_field(:y, "temp_max", bin: true)
|> Vl.encode(:size, aggregate: :count)
],
:vertical
)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/weather.csv"},"transform":[{"filter":"datum.location == 'Seattle'"}],"vconcat":[{"encoding":{"x":{"field":"date","timeUnit":"month","type":"ordinal"},"y":{"aggregate":"mean","field":"precipitation"}},"mark":"bar"},{"encoding":{"size":{"aggregate":"count"},"x":{"bin":true,"field":"temp_min"},"y":{"bin":true,"field":"temp_max"}},"mark":"point"}]}
Maps (geographic displays)
Projection
A cartographic projection allows for mapping longitude and latitude pairs to x, y coordinates.
# Source: https://vega.github.io/vega-lite/docs/projection.html
Vl.new(width: 500, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/airports.csv")
|> Vl.projection(type: :albers_usa)
|> Vl.mark(:circle)
|> Vl.encode_field(:longitude, "longitude", type: :quantitative)
|> Vl.encode_field(:latitude, "latitude", type: :quantitative)
|> Vl.encode(:size, value: 10)
|> Vl.config(view: [stroke: nil])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","config":{"view":{"stroke":null}},"data":{"url":"https://vega.github.io/editor/data/airports.csv"},"encoding":{"latitude":{"field":"latitude","type":"quantitative"},"longitude":{"field":"longitude","type":"quantitative"},"size":{"value":10}},"height":300,"mark":"circle","projection":{"type":"albersUsa"},"width":500}
Choropleth map
A Choropleth map is a map composed of colored polygons, used to represent spatial variations of a quantity.
# Source: https://vega.github.io/vega-lite/examples/geo_choropleth.html
Vl.new(width: 500, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/us-10m.json",
format: [type: :topojson, feature: "counties"]
)
|> Vl.transform(
lookup: "id",
from: [
data: [url: "https://vega.github.io/editor/data/unemployment.tsv"],
key: "id",
fields: ["rate"]
]
)
|> Vl.projection(type: :albers_usa)
|> Vl.mark(:geoshape)
|> Vl.encode_field(:color, "rate", type: :quantitative)
|> Vl.config(view: [stroke: nil])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","config":{"view":{"stroke":null}},"data":{"format":{"feature":"counties","type":"topojson"},"url":"https://vega.github.io/editor/data/us-10m.json"},"encoding":{"color":{"field":"rate","type":"quantitative"}},"height":300,"mark":"geoshape","projection":{"type":"albersUsa"},"transform":[{"from":{"data":{"url":"https://vega.github.io/editor/data/unemployment.tsv"},"fields":["rate"],"key":"id"},"lookup":"id"}],"width":500}
Interactive graphics
Overview and detail
Two charts - one for selecting the range of interest, and the other for displaying that specific range.
# Source: https://vega.github.io/vega-lite/examples/interactive_overview_detail.html
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/sp500.csv")
|> Vl.concat(
[
Vl.new(width: 480)
|> Vl.mark(:area)
|> Vl.encode_field(:x, "date",
type: :temporal,
scale: [domain: [param: "brush"]],
axis: [title: nil]
)
|> Vl.encode_field(:y, "price", type: :quantitative),
Vl.new(width: 480, height: 60)
|> Vl.param("brush", select: [type: :interval, encodings: [:x]])
|> Vl.mark(:area)
|> Vl.encode_field(:x, "date", type: :temporal)
|> Vl.encode_field(:y, "price", type: :quantitative, axis: [tick_count: 3, grid: false])
],
:vertical
)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/sp500.csv"},"vconcat":[{"encoding":{"x":{"axis":{"title":null},"field":"date","scale":{"domain":{"param":"brush"}},"type":"temporal"},"y":{"field":"price","type":"quantitative"}},"mark":"area","width":480},{"encoding":{"x":{"field":"date","type":"temporal"},"y":{"axis":{"grid":false,"tickCount":3},"field":"price","type":"quantitative"}},"height":60,"mark":"area","params":[{"name":"brush","select":{"encodings":["x"],"type":"interval"}}],"width":480}]}
Scatterplot with external links and tooltips
A scatterplot with each point having a tooltip and linking to some page.
# Source: https://vega.github.io/vega-lite/examples/point_href.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/cars.json")
|> Vl.transform(
calculate: "'https://www.google.com/search?q=' + datum.Name",
as: "url"
)
|> Vl.mark(:point)
|> Vl.encode_field(:x, "Horsepower", type: :quantitative)
|> Vl.encode_field(:y, "Miles_per_Gallon", type: :quantitative)
|> Vl.encode_field(:color, "Origin", type: :nominal)
|> Vl.encode_field(:tooltip, "Name", type: :nominal)
|> Vl.encode_field(:href, "url", type: :nominal)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/cars.json"},"encoding":{"color":{"field":"Origin","type":"nominal"},"href":{"field":"url","type":"nominal"},"tooltip":{"field":"Name","type":"nominal"},"x":{"field":"Horsepower","type":"quantitative"},"y":{"field":"Miles_per_Gallon","type":"quantitative"}},"height":300,"mark":"point","transform":[{"as":"url","calculate":"'https://www.google.com/search?q=' + datum.Name"}],"width":400}
Regular brush
Highlighting points by selecting and dragging a rectangular area.
# Source: https://vega.github.io/vega-lite/examples/interactive_brush.html
Vl.new(width: 400, height: 300)
|> Vl.data_from_url("https://vega.github.io/editor/data/cars.json")
|> Vl.param("brush", select: :interval)
|> Vl.mark(:point)
|> Vl.encode_field(:x, "Horsepower", type: :quantitative)
|> Vl.encode_field(:y, "Miles_per_Gallon", type: :quantitative)
|> Vl.encode(:color,
condition: [param: "brush", field: "Cylinders", type: :ordinal],
value: :gray
)
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/cars.json"},"encoding":{"color":{"condition":{"field":"Cylinders","param":"brush","type":"ordinal"},"value":"gray"},"x":{"field":"Horsepower","type":"quantitative"},"y":{"field":"Miles_per_Gallon","type":"quantitative"}},"height":300,"mark":"point","params":[{"name":"brush","select":"interval"}],"width":400}
Interactive mean
A brush selection parameterizing the range of data points to calculate mean over.
# Source: https://vega.github.io/vega-lite/examples/selection_layer_bar_month.html
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/weather.csv")
|> Vl.transform(filter: "datum.location == 'Seattle'")
|> Vl.layers([
Vl.new()
|> Vl.param("brush", select: [type: :interval, encodings: ["x"]])
|> Vl.mark(:bar)
|> Vl.encode_field(:x, "date", time_unit: :month, type: :ordinal)
|> Vl.encode_field(:y, "precipitation", aggregate: :mean)
|> Vl.encode(:opacity, value: 0.7, condition: [param: "brush", value: 1]),
Vl.new()
|> Vl.transform(filter: [param: "brush"])
|> Vl.mark(:rule)
|> Vl.encode_field(:y, "precipitation", aggregate: :mean)
|> Vl.encode(:color, value: :firebrick)
|> Vl.encode(:size, value: 3)
])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","data":{"url":"https://vega.github.io/editor/data/weather.csv"},"layer":[{"encoding":{"opacity":{"condition":{"param":"brush","value":1},"value":0.7},"x":{"field":"date","timeUnit":"month","type":"ordinal"},"y":{"aggregate":"mean","field":"precipitation"}},"mark":"bar","params":[{"name":"brush","select":{"encodings":["x"],"type":"interval"}}]},{"encoding":{"color":{"value":"firebrick"},"size":{"value":3},"y":{"aggregate":"mean","field":"precipitation"}},"mark":"rule","transform":[{"filter":{"param":"brush"}}]}],"transform":[{"filter":"datum.location == 'Seattle'"}]}
Map connections
An interactive visualization of connections between locations on a map.
# Source: https://vega.github.io/vega-lite/examples/airport_connections.html
Vl.new(width: 800, height: 500)
|> Vl.projection(type: :albers_usa)
|> Vl.layers([
# Map with regions
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/us-10m.json",
format: [type: :topojson, feature: "states"]
)
|> Vl.mark(:geoshape, fill: "#ddd", stroke: "#fff", stroke_width: 1),
# Connection lines
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/flights-airport.csv")
|> Vl.mark(:rule, color: "#000", opacity: 0.35)
|> Vl.transform(filter: [param: "org", empty: false])
|> Vl.transform(
lookup: "origin",
from: [
data: [url: "https://vega.github.io/editor/data/airports.csv"],
key: "iata",
fields: ["latitude", "longitude"]
]
)
|> Vl.transform(
lookup: "destination",
from: [
data: [url: "https://vega.github.io/editor/data/airports.csv"],
key: "iata",
fields: ["latitude", "longitude"]
],
as: ["latitude2", "longitude2"]
)
|> Vl.encode_field(:latitude, "latitude")
|> Vl.encode_field(:longitude, "longitude")
|> Vl.encode_field(:latitude2, "latitude2")
|> Vl.encode_field(:longitude2, "longitude2"),
# Points
Vl.new()
|> Vl.data_from_url("https://vega.github.io/editor/data/flights-airport.csv")
|> Vl.transform(aggregate: [[op: :count, as: "routes"]], groupby: ["origin"])
|> Vl.transform(
lookup: "origin",
from: [
data: [url: "https://vega.github.io/editor/data/airports.csv"],
key: "iata",
fields: ["state", "latitude", "longitude"]
]
)
|> Vl.transform(filter: "datum.state !== 'PR' && datum.state !== 'VI'")
|> Vl.param("org", select: [type: :point, on: :mouseover, nearest: true, fields: ["origin"]])
|> Vl.mark(:circle)
|> Vl.encode_field(:latitude, "latitude")
|> Vl.encode_field(:longitude, "longitude")
|> Vl.encode_field(:size, "routes", type: :quantitative, scale: [max_range: 1000], legend: nil)
|> Vl.encode_field(:order, "routes", sort: :descending)
])
|> Vl.config(view: [stroke: nil])
{"$schema":"https://vega.github.io/schema/vega-lite/v5.json","config":{"view":{"stroke":null}},"height":500,"layer":[{"data":{"format":{"feature":"states","type":"topojson"},"url":"https://vega.github.io/editor/data/us-10m.json"},"mark":{"fill":"#ddd","stroke":"#fff","strokeWidth":1,"type":"geoshape"}},{"data":{"url":"https://vega.github.io/editor/data/flights-airport.csv"},"encoding":{"latitude":{"field":"latitude"},"latitude2":{"field":"latitude2"},"longitude":{"field":"longitude"},"longitude2":{"field":"longitude2"}},"mark":{"color":"#000","opacity":0.35,"type":"rule"},"transform":[{"filter":{"empty":false,"param":"org"}},{"from":{"data":{"url":"https://vega.github.io/editor/data/airports.csv"},"fields":["latitude","longitude"],"key":"iata"},"lookup":"origin"},{"as":["latitude2","longitude2"],"from":{"data":{"url":"https://vega.github.io/editor/data/airports.csv"},"fields":["latitude","longitude"],"key":"iata"},"lookup":"destination"}]},{"data":{"url":"https://vega.github.io/editor/data/flights-airport.csv"},"encoding":{"latitude":{"field":"latitude"},"longitude":{"field":"longitude"},"order":{"field":"routes","sort":"descending"},"size":{"field":"routes","legend":null,"scale":{"maxRange":1000},"type":"quantitative"}},"mark":"circle","params":[{"name":"org","select":{"fields":["origin"],"nearest":true,"on":"mouseover","type":"point"}}],"transform":[{"aggregate":[{"as":"routes","op":"count"}],"groupby":["origin"]},{"from":{"data":{"url":"https://vega.github.io/editor/data/airports.csv"},"fields":["state","latitude","longitude"],"key":"iata"},"lookup":"origin"},{"filter":"datum.state !== 'PR' && datum.state !== 'VI'"}]}],"projection":{"type":"albersUsa"},"width":800}