Day 16
Mix.install([
{:kino, "~> 0.14.2"},
{:kino_aoc, "~> 0.1.7"},
{:libgraph, "~> 0.16.0"}
])
Part 1
example = """
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
"""
{:ok, input} = if true do
KinoAOC.download_puzzle("2024", "16", System.fetch_env!("LB_AOC_SESSION"))
else
{:ok, example}
end
grid = input
|> String.trim()
|> String.split("\n")
|> Enum.map(&String.graphemes/1)
# Grid with values
val_grid = for {row, i} <- Enum.with_index(grid) do
for {val, j} <- Enum.with_index(row) do
{{i, j}, val}
end
end |> List.flatten()
# Previous grid for tracking best paths
prev_grid = for {{i, j}, _v} <- val_grid do
for dir <- [:v, :>, :<, :^] do
{{i, j, dir}, []}
end
end |> List.flatten() |> Enum.into(%{})
# Cost grid with enumerated directions
cost_grid = for {{i, j}, _v} <- val_grid do
for dir <- [:v, :>, :<, :^] do
{{i, j, dir}, :inf}
end
end |> List.flatten() |> Enum.into(%{})
{{start_i, start_j}, _val} = List.keyfind(val_grid, "S", 1)
{{end_i, end_j}, _val} = List.keyfind(val_grid, "E", 1)
val_grid = Enum.into(val_grid, %{})
defmodule Part1 do
# Get new direction after a turn
def turn(:>, turn), do: if(turn == :l, do: :^, else: :v)
def turn(:v, turn), do: if(turn == :l, do: :>, else: :<)
def turn(:<, turn), do: if(turn == :l, do: :v, else: :^)
def turn(:^, turn), do: if(turn == :l, do: :<, else: :>)
# Get next location in a given direction
def get_next_loc(dir, {i, j}) do
case dir do
:> -> {i, j + 1}
:< -> {i, j - 1}
:^ -> {i - 1, j}
:v -> {i + 1, j}
end
end
# Get non-wall neighbors, costs, and directions
def get_neighbors(dir, loc, val_grid) do
ldir = turn(dir, :l)
rdir = turn(dir, :r)
f = {dir |> get_next_loc(loc), 1, dir}
l = {ldir |> get_next_loc(loc), 1001, ldir}
r = {rdir |> get_next_loc(loc), 1001, rdir}
# Filter walls; return list of valid neighbors
Enum.filter([f, l, r], fn {loc1, _c1, _d1} ->
val = Map.fetch!(val_grid, loc1)
val != "#"
end)
end
def walk_grid([], cost_grid, _, prev_grid), do: {cost_grid, prev_grid}
def walk_grid([{{i, j}, _c, dir} | rest_to_check], cost_grid, val_grid, prev_grid) do
my_cost = Map.get(cost_grid, {i, j, dir})
# Find neighbors who have a lower cost path than previously known
neighs_to_check = get_neighbors(dir, {i, j}, val_grid)
|> Enum.filter(fn {{ni, nj}, ncost, ndir} ->
(ncost + my_cost) <= Map.fetch!(cost_grid, {ni, nj, ndir})
end)
# Update cost grid with new values
{cost_grid, prev_grid} = Enum.reduce(
neighs_to_check,
{cost_grid, prev_grid},
fn {{ni, nj}, ncost, ndir}, {cost_acc, prev_acc} ->
new_cost = ncost + my_cost
prev_acc = if new_cost < Map.fetch!(cost_grid, {ni, nj, ndir}) do
Map.replace!(prev_acc, {ni, nj, ndir}, [{i, j, dir}]) # Replace path for lower cost
else
Map.update!(prev_acc, {ni, nj, ndir}, & [{i, j, dir} | &1]) # Add path for equal cost
end
cost_acc = Map.replace!(cost_acc, {ni, nj, ndir}, ncost + my_cost)
{cost_acc, prev_acc}
end)
# Continue walking neighbors
walk_grid(neighs_to_check ++ rest_to_check, cost_grid, val_grid, prev_grid)
end
def count_tiles([], _, acc), do: acc
def count_tiles([{i, j, dir} | rest], prev_grid, acc) do
new_tiles = Map.get(prev_grid, {i, j, dir}, []) |> MapSet.new()
new_tiles = MapSet.difference(new_tiles, acc) |> MapSet.to_list()
count_tiles(new_tiles ++ rest, prev_grid, MapSet.put(acc, {i, j}))
end
end
# Prep
cost_grid = Map.replace!(cost_grid, {start_i, start_j, :>}, 0)
# Walk
{cost_grid, prev_grid} = Part1.walk_grid([{{start_i, start_j}, 0, :>}], cost_grid, val_grid, prev_grid)
result = for dir <- [:v, :>, :<, :^] do
Map.get(cost_grid, {end_i, end_j, dir})
end |> Enum.min()
Part 2
result =
for dir <- [:>, :<, :^, :v] do
Part1.count_tiles([{end_i, end_j, dir}], prev_grid, MapSet.new())
|> MapSet.to_list() |> Enum.count()
end |> Enum.filter(& &1 > 1) |> Enum.min()