Advent of Code 2023 - Day 11
Mix.install([
{:kino_aoc, "~> 0.1"}
])
Introduction
— Day 11: Cosmic Expansion —
You continue following signs for “Hot Springs” and eventually come across an observatory. The Elf within turns out to be a researcher studying cosmic expansion using the giant telescope here.
He doesn’t know anything about the missing machine parts; he’s only visiting for this research project. However, he confirms that the hot springs are the next-closest area likely to have people; he’ll even take you straight there once he’s done with today’s observation analysis.
Maybe you can help him with the analysis to speed things up?
The researcher has collected a bunch of data and compiled the data into a single giant image (your puzzle input). The image includes empty space (.
) and galaxies (#
). For example:
...#......
.......#..
#.........
..........
......#...
.#........
.........#
..........
.......#..
#...#.....
The researcher is trying to figure out the sum of the lengths of the shortest path between every pair of galaxies. However, there’s a catch: the universe expanded in the time it took the light from those galaxies to reach the observatory.
Due to something involving gravitational effects, only some space expands. In fact, the result is that any rows or columns that contain no galaxies should all actually be twice as big.
In the above example, three columns and two rows contain no galaxies:
v v v
...#......
.......#..
#.........
>..........<
......#...
.#........
.........#
>..........<
.......#..
#...#.....
^ ^ ^
These rows and columns need to be twice as big; the result of cosmic expansion therefore looks like this:
....#........
.........#...
#............
.............
.............
........#....
.#...........
............#
.............
.............
.........#...
#....#.......
Equipped with this expanded universe, the shortest path between every pair of galaxies can be found. It can help to assign every galaxy a unique number:
....1........
.........2...
3............
.............
.............
........4....
.5...........
............6
.............
.............
.........7...
8....9.......
In these 9 galaxies, there are 36 pairs. Only count each pair once; order within the pair doesn’t matter. For each pair, find any shortest path between the two galaxies using only steps that move up, down, left, or right exactly one .
or #
at a time. (The shortest path between two galaxies is allowed to pass through another galaxy.)
For example, here is one of the shortest paths between galaxies 5
and 9
:
....1........
.........2...
3............
.............
.............
........4....
.5...........
.##.........6
..##.........
...##........
....##...7...
8....9.......
This path has length 9
because it takes a minimum of nine steps to get from galaxy 5
to galaxy 9
(the eight locations marked #
plus the step onto galaxy 9
itself). Here are some other example shortest path lengths:
-
Between galaxy
1
and galaxy7
: 15 -
Between galaxy
3
and galaxy6
: 17 -
Between galaxy
8
and galaxy9
: 5
In this example, after expanding the universe, the sum of the shortest path between all 36 pairs of galaxies is 374
.
Expand the universe, then find the length of the shortest path between every pair of galaxies. What is the sum of these lengths?
— Part Two —
The galaxies are much older (and thus much farther apart) than the researcher initially estimated.
Now, instead of the expansion you did before, make each empty row or column one million times larger. That is, each empty row should be replaced with 1000000
empty rows, and each empty column should be replaced with 1000000
empty columns.
(In the example above, if each empty row or column were merely 10
times larger, the sum of the shortest paths between every pair of galaxies would be 1030
. If each empty row or column were merely 100
times larger, the sum of the shortest paths between every pair of galaxies would be 8410
. However, your universe will need to expand far beyond these values.)
Starting with the same initial image, expand the universe according to these new rules, then find the length of the shortest path between every pair of galaxies. What is the sum of these lengths?
Puzzle
{:ok, puzzle_input} =
KinoAOC.download_puzzle("2023", "11", System.fetch_env!("LB_AOC_SESSION"))
IO.puts(puzzle_input)
Tools
Code - Tools
defmodule Tools do
def get_size(matrix) do
size_x = matrix |> hd() |> length()
size_y = matrix |> length()
{size_x, size_y}
end
def get_value(matrix, {x, y}) do
{size_x, size_y} = get_size(matrix)
cond do
x < 0 or x >= size_x ->
"."
y < 0 or y >= size_y ->
"."
true ->
matrix
|> Enum.at(y, [])
|> Enum.at(x, ".")
end
end
end
Part One
Code - Part 1
defmodule PartOne do
def solve(input) do
IO.puts("--- Part One ---")
IO.puts("Result: #{run(input)}")
end
def run(input) do
universe =
input
|> String.split("\n", trim: true)
|> Enum.map(&String.codepoints(&1))
|> expand()
{size_x, size_y} = Tools.get_size(universe)
galaxies =
for y <- 0..(size_y - 1),
x <- 0..(size_x - 1),
Tools.get_value(universe, {x, y}) == "#",
do: {x, y}
distances =
for g1 <- galaxies, g2 <- galaxies, reduce: %{} do
dist ->
condition =
Map.has_key?(dist, [g1, g2]) or
Map.has_key?(dist, [g2, g1]) or
g1 == g2
case condition do
true -> dist
false -> Map.put(dist, [g1, g2], distance(g1, g2))
end
end
distances
|> Enum.map(fn {_, dist} -> dist end)
|> Enum.sum()
end
defp expand(universe) do
universe
|> duplicate_row()
|> transpose()
|> duplicate_row()
|> transpose()
end
defp duplicate_row(universe) do
{size_x, size_y} = Tools.get_size(universe)
universe =
universe
|> Enum.map(&Enum.join(&1))
for y <- 0..(size_y - 1) do
case Enum.at(universe, y) == String.duplicate(".", size_x) do
true -> [Enum.at(universe, y), Enum.at(universe, y)]
false -> Enum.at(universe, y)
end
end
|> List.flatten()
|> Enum.map(&String.codepoints(&1))
end
defp transpose(universe) do
{size_x, size_y} = Tools.get_size(universe)
for x <- 0..(size_x - 1) do
for y <- 0..(size_y - 1) do
Tools.get_value(universe, {x, y})
end
end
end
defp distance({x1, y1}, {x2, y2}) do
abs(x2 - x1) + abs(y2 - y1)
end
end
Tests - Part 1
ExUnit.start(autorun: false)
defmodule PartOneTest do
use ExUnit.Case, async: true
import PartOne
@input """
...#......
.......#..
#.........
..........
......#...
.#........
.........#
..........
.......#..
#...#.....
"""
@expected 374
test "part one" do
assert run(@input) == @expected
end
end
ExUnit.run()
Solution - Part 1
PartOne.solve(puzzle_input)
Part Two
The galaxy expansion is a linear function:
f = fn x -> a * x + b end
# I have x1, x2, d1 and d2
a * x1 + b = d1 # (equation 1)
a * x2 + b = d2 # (equation 2)
Apply Cramer’s Rule:
det = x1 - x2
a = (d1 - d2) / det
b = (x1 * d2 - x2 * d1) / det
Code - Part 2
defmodule PartTwo do
def solve(input, times) do
IO.puts("--- Part Two ---")
IO.puts("Result: #{run(input, times)}")
end
def run(input, times) do
universe =
input
|> String.split("\n", trim: true)
|> Enum.map(&String.codepoints(&1))
# times = 1
x1 = 1
# times = 2
x2 = 2
d1 = universe |> sum_of_distances()
d2 = universe |> expand() |> sum_of_distances()
det = x1 - x2
a = ((d1 - d2) / det) |> floor()
b = ((x1 * d2 - x2 * d1) / det) |> floor()
# Solution
a * times + b
end
defp sum_of_distances(universe) do
{size_x, size_y} = Tools.get_size(universe)
galaxies =
for y <- 0..(size_y - 1),
x <- 0..(size_x - 1),
Tools.get_value(universe, {x, y}) == "#",
do: {x, y}
distances =
for g1 <- galaxies, g2 <- galaxies, reduce: %{} do
dist ->
condition =
Map.has_key?(dist, [g1, g2]) or
Map.has_key?(dist, [g2, g1]) or
g1 == g2
case condition do
true -> dist
false -> Map.put(dist, [g1, g2], distance(g1, g2))
end
end
distances
|> Enum.map(fn {_, dist} -> dist end)
|> Enum.sum()
end
defp expand(universe) do
universe
|> duplicate_row()
|> transpose()
|> duplicate_row()
|> transpose()
end
defp duplicate_row(universe) do
{size_x, size_y} = Tools.get_size(universe)
universe =
universe
|> Enum.map(&Enum.join(&1))
for y <- 0..(size_y - 1) do
case Enum.at(universe, y) == String.duplicate(".", size_x) do
true -> [Enum.at(universe, y), Enum.at(universe, y)]
false -> Enum.at(universe, y)
end
end
|> List.flatten()
|> Enum.map(&String.codepoints(&1))
end
defp transpose(universe) do
{size_x, size_y} = Tools.get_size(universe)
for x <- 0..(size_x - 1) do
for y <- 0..(size_y - 1) do
Tools.get_value(universe, {x, y})
end
end
end
defp distance({x1, y1}, {x2, y2}) do
abs(x2 - x1) + abs(y2 - y1)
end
end
Tests - Part 2
ExUnit.start(autorun: false)
defmodule PartTwoTest do
use ExUnit.Case, async: true
import PartTwo
@input """
...#......
.......#..
#.........
..........
......#...
.#........
.........#
..........
.......#..
#...#.....
"""
@expected1 1030
@expected2 8410
test "part two" do
assert run(@input, 10) == @expected1
assert run(@input, 100) == @expected2
end
end
ExUnit.run()
Solution - Part 2
PartTwo.solve(puzzle_input, 1_000_000)