AI Improvement Review & Collaboration
Mix.install([
{:kino, "~> 0.13.0"},
{:kino_vega_lite, "~> 0.1.11"},
{:kino_db, "~> 0.2.7"},
{:vega_lite, "~> 0.1.9"},
{:explorer, "~> 0.8.0"}
])
Introduction
This notebook enables collaborative review and validation of AI-suggested improvements for the self-sustaining system. Teams can analyze improvement proposals, validate their effectiveness, and make data-driven decisions about implementation.
Connect to Phoenix Application
# Connect to the Phoenix application node
node = :"self_sustaining@localhost"
Node.connect(node)
# Get the integration module
alias SelfSustaining.LivebookIntegration
alias Explorer.DataFrame, as: DF
alias VegaLite, as: Vl
Load AI Improvement Data
# Load AI improvement data
ai_data = LivebookIntegration.get_ai_improvements_data()
Kino.Markdown.new("""
## ๐ค AI Improvement System Overview
### Current Status
- **Total Improvements**: #{length(ai_data.improvements)}
- **Active Tasks**: #{length(ai_data.tasks)}
- **Metrics Collected**: #{length(ai_data.metrics)}
- **Success Rate**: #{Float.round(ai_data.analysis.success_rate, 1)}%
### Data Collection Time
#{DateTime.utc_now() |> DateTime.to_string()}
""")
Recent Improvement Proposals
# Display recent improvements with status
recent_improvements =
ai_data.improvements
|> Enum.take(10)
|> Enum.map(fn improvement ->
%{
id: improvement.id,
type: improvement.improvement_type || "general",
status: improvement.status || "pending",
priority: improvement.priority || "medium",
description: String.slice(improvement.description || "No description", 0, 100) <> "...",
confidence: improvement.confidence_score || 0.0,
impact: improvement.expected_impact || "unknown",
created_at: improvement.inserted_at |> DateTime.to_string()
}
end)
Kino.DataTable.new(recent_improvements, name: "Recent AI Improvement Proposals")
Improvement Type Analysis
# Analyze improvement types and their success rates
improvement_types =
ai_data.improvements
|> Enum.group_by(& &1.improvement_type)
|> Enum.map(fn {type, improvements} ->
completed = Enum.count(improvements, &(&1.status == :completed))
%{
type: type || "general",
total: length(improvements),
completed: completed,
success_rate: if(length(improvements) > 0, do: completed / length(improvements) * 100, else: 0),
avg_confidence: Enum.reduce(improvements, 0, &(&1.confidence_score + &2)) / length(improvements)
}
end)
# Success rate by improvement type
success_chart =
Vl.new(width: 600, height: 400)
|> Vl.data_from_values(improvement_types)
|> Vl.mark(:bar)
|> Vl.encode_field(:x, "type", type: :nominal, title: "Improvement Type")
|> Vl.encode_field(:y, "success_rate", type: :quantitative, title: "Success Rate (%)")
|> Vl.encode_field(:color, "avg_confidence", type: :quantitative, title: "Avg Confidence")
|> Vl.config(title: [text: "Success Rate by Improvement Type", fontSize: 16])
Kino.VegaLite.new(success_chart)
Interactive Improvement Review
# Create improvement selector for detailed review
improvement_selector = Kino.Input.select("Select Improvement for Review",
recent_improvements |> Enum.map(&{"#{&1.type}: #{String.slice(&1.description, 0, 50)}...", &1.id})
)
selected_improvement_id = Kino.Input.read(improvement_selector)
if selected_improvement_id do
selected_improvement = Enum.find(ai_data.improvements, &(&1.id == selected_improvement_id))
if selected_improvement do
# Get related tasks and metrics
related_tasks = Enum.filter(ai_data.tasks, &(&1.improvement_id == selected_improvement_id))
related_metrics = Enum.filter(ai_data.metrics, &(&1.improvement_id == selected_improvement_id))
Kino.Markdown.new("""
## ๐ Improvement Review: #{selected_improvement.improvement_type}
### Basic Information
| Property | Value |
|----------|-------|
| **ID** | #{selected_improvement.id} |
| **Type** | #{selected_improvement.improvement_type} |
| **Status** | #{selected_improvement.status} |
| **Priority** | #{selected_improvement.priority} |
| **Confidence Score** | #{selected_improvement.confidence_score}/1.0 |
| **Expected Impact** | #{selected_improvement.expected_impact} |
| **Created** | #{selected_improvement.inserted_at |> DateTime.to_string()} |
### Description
#{selected_improvement.description}
### Technical Details
#{if selected_improvement.technical_details do
"```\n#{selected_improvement.technical_details}\n```"
else
"No technical details available"
end}
### Related Tasks
#{if length(related_tasks) > 0 do
related_tasks
|> Enum.map(&"- #{&1.task_type}: #{&1.description}")
|> Enum.join("\n")
else
"No related tasks found"
end}
### Performance Metrics
#{if length(related_metrics) > 0 do
related_metrics
|> Enum.take(5)
|> Enum.map(&"- #{&1.metric_type}: #{&1.value} (#{&1.unit})")
|> Enum.join("\n")
else
"No performance metrics available"
end}
""")
else
Kino.Markdown.new("Improvement not found.")
end
else
Kino.Markdown.new("Please select an improvement to review.")
end
Collaborative Review Process
if selected_improvement_id do
# Create review form
review_frame = Kino.Frame.new()
# Review inputs
review_inputs = [
technical_feasibility: Kino.Input.select("Technical Feasibility", [
{"High - Can be implemented easily", "high"},
{"Medium - Requires moderate effort", "medium"},
{"Low - Significant technical challenges", "low"}
]),
business_impact: Kino.Input.select("Business Impact", [
{"High - Significant value", "high"},
{"Medium - Moderate value", "medium"},
{"Low - Limited value", "low"}
]),
risk_assessment: Kino.Input.select("Risk Level", [
{"Low - Minimal risk", "low"},
{"Medium - Manageable risk", "medium"},
{"High - Significant risk", "high"}
]),
implementation_priority: Kino.Input.select("Implementation Priority", [
{"Critical - Implement immediately", "critical"},
{"High - Next sprint", "high"},
{"Medium - Future planning", "medium"},
{"Low - Consider later", "low"}
]),
reviewer_notes: Kino.Input.textarea("Reviewer Notes")
]
# Submit review button
submit_review = Kino.Control.button("Submit Review")
# Display review form
form_content = Kino.Layout.grid([
Kino.Markdown.new("## ๐ Improvement Review Form"),
review_inputs.technical_feasibility,
review_inputs.business_impact,
review_inputs.risk_assessment,
review_inputs.implementation_priority,
review_inputs.reviewer_notes,
submit_review
], columns: 1)
Kino.Frame.render(review_frame, form_content)
# Handle review submission
Kino.Control.stream(submit_review)
|> Kino.listen(fn _event ->
review_data = %{
improvement_id: selected_improvement_id,
technical_feasibility: Kino.Input.read(review_inputs.technical_feasibility),
business_impact: Kino.Input.read(review_inputs.business_impact),
risk_assessment: Kino.Input.read(review_inputs.risk_assessment),
implementation_priority: Kino.Input.read(review_inputs.implementation_priority),
reviewer_notes: Kino.Input.read(review_inputs.reviewer_notes),
reviewer: "livebook_user",
review_timestamp: DateTime.utc_now()
}
# Save review to file
review_filename = "improvement_review_#{selected_improvement_id}_#{DateTime.utc_now() |> DateTime.to_unix()}.json"
File.write!(review_filename, Jason.encode!(review_data, pretty: true))
success_message = Kino.Markdown.new("""
โ
**Review Submitted Successfully**
Review saved to: `#{review_filename}`
**Review Summary:**
- Technical Feasibility: #{review_data.technical_feasibility}
- Business Impact: #{review_data.business_impact}
- Risk Level: #{review_data.risk_assessment}
- Priority: #{review_data.implementation_priority}
""")
Kino.Frame.render(review_frame, success_message)
end)
review_frame
else
Kino.Markdown.new("Please select an improvement to review.")
end
Improvement Trends Analysis
# Analyze improvement trends over time
if length(ai_data.improvements) > 0 do
improvements_timeline =
ai_data.improvements
|> Enum.map(fn improvement ->
%{
date: improvement.inserted_at |> DateTime.to_date() |> Date.to_string(),
type: improvement.improvement_type || "general",
status: improvement.status || "pending",
confidence: improvement.confidence_score || 0.0
}
end)
# Timeline chart
timeline_chart =
Vl.new(width: 800, height: 400)
|> Vl.data_from_values(improvements_timeline)
|> Vl.mark(:circle, size: 100)
|> Vl.encode_field(:x, "date", type: :temporal, title: "Date")
|> Vl.encode_field(:y, "type", type: :nominal, title: "Improvement Type")
|> Vl.encode_field(:color, "status", type: :nominal, title: "Status")
|> Vl.encode_field(:size, "confidence", type: :quantitative, title: "Confidence")
|> Vl.config(title: [text: "Improvement Timeline", fontSize: 16])
Kino.VegaLite.new(timeline_chart)
else
Kino.Markdown.new("No improvement data available for timeline analysis.")
end
AI Performance Metrics
# Display AI system performance metrics
if length(ai_data.metrics) > 0 do
recent_metrics =
ai_data.metrics
|> Enum.take(20)
|> Enum.map(fn metric ->
%{
metric_type: metric.metric_type || "unknown",
value: metric.value || 0,
unit: metric.unit || "",
timestamp: metric.created_at |> DateTime.to_string(),
improvement_related: !is_nil(metric.improvement_id)
}
end)
# Metrics over time
metrics_chart =
Vl.new(width: 700, height: 300)
|> Vl.data_from_values(recent_metrics)
|> Vl.mark(:line, point: true)
|> Vl.encode_field(:x, "timestamp", type: :temporal, title: "Time")
|> Vl.encode_field(:y, "value", type: :quantitative, title: "Metric Value")
|> Vl.encode_field(:color, "metric_type", type: :nominal, title: "Metric Type")
|> Vl.config(title: [text: "AI System Performance Metrics", fontSize: 16])
Kino.VegaLite.new(metrics_chart)
# Metrics summary table
Kino.DataTable.new(recent_metrics, name: "Recent Performance Metrics")
else
Kino.Markdown.new("No performance metrics available.")
end
Improvement Validation Testing
# Testing framework for improvement validation
testing_frame = Kino.Frame.new()
if selected_improvement_id do
test_inputs = [
test_type: Kino.Input.select("Test Type", [
{"Unit Tests", "unit"},
{"Integration Tests", "integration"},
{"Performance Tests", "performance"},
{"User Acceptance Tests", "uat"}
]),
test_environment: Kino.Input.select("Test Environment", [
{"Development", "dev"},
{"Staging", "staging"},
{"Production (Canary)", "prod_canary"}
]),
test_duration: Kino.Input.select("Test Duration", [
{"Quick (< 1 hour)", "quick"},
{"Medium (1-4 hours)", "medium"},
{"Extended (> 4 hours)", "extended"}
])
]
run_tests_button = Kino.Control.button("Run Validation Tests")
test_form = Kino.Layout.grid([
Kino.Markdown.new("## ๐งช Improvement Validation Testing"),
test_inputs.test_type,
test_inputs.test_environment,
test_inputs.test_duration,
run_tests_button
], columns: 1)
Kino.Frame.render(testing_frame, test_form)
# Handle test execution
Kino.Control.stream(run_tests_button)
|> Kino.listen(fn _event ->
test_config = %{
improvement_id: selected_improvement_id,
test_type: Kino.Input.read(test_inputs.test_type),
environment: Kino.Input.read(test_inputs.test_environment),
duration: Kino.Input.read(test_inputs.test_duration),
started_at: DateTime.utc_now()
}
# Simulate test execution (in real implementation, this would trigger actual tests)
test_results = %{
test_id: "test_#{System.unique_integer()}",
status: "running",
progress: 0,
estimated_completion: DateTime.add(DateTime.utc_now(), 3600, :second)
}
result_content = Kino.Markdown.new("""
๐ **Test Execution Started**
**Test Configuration:**
- Type: #{test_config.test_type}
- Environment: #{test_config.environment}
- Duration: #{test_config.duration}
- Started: #{test_config.started_at |> DateTime.to_string()}
**Test ID:** #{test_results.test_id}
**Status:** #{test_results.status}
**Estimated Completion:** #{test_results.estimated_completion |> DateTime.to_string()}
_Note: In a real implementation, this would integrate with your CI/CD pipeline to execute actual validation tests._
""")
Kino.Frame.render(testing_frame, result_content)
end)
testing_frame
else
Kino.Markdown.new("Please select an improvement to run validation tests.")
end
Team Collaboration Dashboard
# Create collaborative workspace for team discussions
collaboration_frame = Kino.Frame.new()
team_discussion = Kino.Input.textarea("Team Discussion Notes")
add_comment_button = Kino.Control.button("Add Comment")
# Load existing comments (mock data for demo)
existing_comments = [
%{author: "Alice", timestamp: "2024-06-15 10:30", comment: "This improvement looks promising for performance optimization."},
%{author: "Bob", timestamp: "2024-06-15 11:15", comment: "Agreed, but we should validate the impact on memory usage."},
%{author: "Carol", timestamp: "2024-06-15 14:20", comment: "I can help with the testing validation process."}
]
display_comments = fn comments ->
comment_text =
comments
|> Enum.map(fn comment ->
"**#{comment.author}** (#{comment.timestamp}): #{comment.comment}"
end)
|> Enum.join("\n\n")
Kino.Layout.grid([
Kino.Markdown.new("## ๐ฌ Team Discussion"),
Kino.Markdown.new(comment_text),
team_discussion,
add_comment_button
], columns: 1)
end
Kino.Frame.render(collaboration_frame, display_comments.(existing_comments))
# Handle new comments
Kino.Control.stream(add_comment_button)
|> Kino.listen(fn _event ->
new_comment = Kino.Input.read(team_discussion)
if String.trim(new_comment) != "" do
updated_comments = existing_comments ++ [%{
author: "Current User",
timestamp: DateTime.utc_now() |> DateTime.to_string(),
comment: new_comment
}]
Kino.Frame.render(collaboration_frame, display_comments.(updated_comments))
end
end)
collaboration_frame
Export Improvement Analysis
# Generate comprehensive improvement analysis report
export_analysis_button = Kino.Control.button("Export Improvement Analysis")
analysis_output = Kino.Frame.new()
Kino.Control.stream(export_analysis_button)
|> Kino.listen(fn _event ->
timestamp = DateTime.utc_now() |> DateTime.to_iso8601()
analysis_report = %{
timestamp: timestamp,
summary: %{
total_improvements: length(ai_data.improvements),
success_rate: ai_data.analysis.success_rate,
recent_improvements: recent_improvements
},
improvement_types: improvement_types,
selected_improvement: if(selected_improvement_id, do: selected_improvement_id, else: nil),
metrics_analysis: ai_data.metrics |> Enum.take(50),
recommendations: [
"Focus on improvements with high confidence scores",
"Prioritize performance-related enhancements",
"Implement comprehensive testing for all changes",
"Maintain collaborative review process"
]
}
analysis_filename = "ai_improvement_analysis_#{String.replace(timestamp, ":", "_")}.json"
File.write!(analysis_filename, Jason.encode!(analysis_report, pretty: true))
content = Kino.Markdown.new("""
โ
**AI Improvement Analysis Exported**
Report saved to: `#{analysis_filename}`
**Analysis Includes:**
- Improvement success rate analysis
- Type-based performance metrics
- Trend analysis over time
- Collaborative review data
- Testing validation results
- Team recommendations
""")
Kino.Frame.render(analysis_output, content)
end)
Kino.Layout.grid([export_analysis_button, analysis_output], columns: 1)