Ch01 Make Machines That Learn
Section
Mix.install([
{:axon, "~>0.5"},
{:nx, "~> 0.5"},
{:explorer, "~> 0.5"},
{:kino, "~> 0.5"}
])
require Explorer.DataFrame, as: DF
iris = Explorer.Datasets.iris()
cols = ~w(sepal_width sepal_length petal_length petal_width)
normalized_iris =
DF.mutate(
iris,
for col <- across(^cols) do
{col.name, (col - mean(col)) / variance(col)}
end
)
DF.mutate(iris,
sepal_width: (sepal_width - mean(sepal_width)) / variance(sepal_width),
sepal_length: (sepal_length - mean(sepal_length)) / variance(sepal_length),
petal_length: (petal_length - mean(petal_length)) / variance(petal_length),
petal_width: (petal_width - mean(petal_width)) / variance(petal_width)
)
# cast the species column to a categorical variable.
normalized_iris =
DF.mutate(
normalized_iris,
species: Explorer.Series.cast(species, :category)
)
# Shuffle the data
shuffled_normalized_iris =
DF.shuffle(normalized_iris)
train_df =
DF.slice(shuffled_normalized_iris, 0..119)
test_df =
DF.slice(shuffled_normalized_iris, 120..149)
feature_columns = [
"sepal_length",
"sepal_width",
"petal_length",
"petal_width"
]
x_train =
Nx.stack(train_df[feature_columns], axis: -1)
y_train =
train_df["species"]
|> Nx.stack(axis: -1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
x_test =
Nx.stack(test_df[feature_columns], axis: -1)
y_test =
test_df["species"]
|> Nx.stack(axis: -1)
|> Nx.equal(Nx.iota({1, 3}, axis: -1))
model =
Axon.input(
"iris_features",
shape: {nil, 4}
)
|> Axon.dense(3, activation: :softmax)
Axon.Display.as_graph(
model,
Nx.template({1, 4}, :f32)
)
data_stream =
Stream.repeatedly(fn -> {x_train, y_train} end)
trained_model_state =
model
|> Axon.Loop.trainer(:categorical_cross_entropy, :sgd)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data_stream, %{}, iterations: 500, epochs: 10)
data = [{x_test, y_test}]
model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(data, trained_model_state)