Data Traversal
Mix.install([
{:jason, "~> 1.4"},
{:kino, "~> 0.9", override: true},
{:youtube, github: "brooklinjazz/youtube"},
{:hidden_cell, github: "brooklinjazz/hidden_cell"}
])
Navigation
Home Report An Issue Custom Enum With ReduceDates And TimesData Traversal
Enum.reduce/3
is often useful for traversing complex or nested data structures.
You’re going to create a DataTraversal
module that can perform some complex data traversal operations.
Example Solution
defmodule DataTraversal do
def sum_keyword_list(keyword_list) do
Enum.reduce(keyword_list, 0, fn {_key, value}, acc -> value + acc end)
end
def aggregate(keyword_list) do
Enum.reduce(keyword_list, [], fn {key, value}, acc ->
previous = acc[key] || 0
Keyword.put(acc, key, previous + value)
end)
|> Enum.sort()
end
def merge_maps(maps) do
Enum.reduce(maps, %{}, fn map, acc ->
Map.merge(acc, map)
end)
end
end
Implement the DataTraversal
module as documented below.
defmodule DataTraversal do
@doc """
Sum all of the integer values in a keyword list. The keys do not matter.
iex> DataTraversal.sum([key: 10, key: 20, key: 30])
60
"""
def sum(keyword_list) do
end
@doc """
Aggregate values with common keys in a keyword list.
Ensure aggregated values are sorted with Enum.sort/1
iex> DataTraversal.aggregate([key1: 10, key1: 20, key2: 30, key2: 20])
[key1: 30, key2: 50]
"""
def aggregate(keyword_list) do
end
@doc """
Merge a list of maps together. New values will replace old values.
iex> maps = [%{keya: "a"}, %{keyb: "b"}, %{keyc: "c"}, %{keyc: "c2"}]
iex> DataTraversal.merge_maps(maps)
%{keya: "a", keyb: "b", keyc: "c2"}
"""
def merge_maps(maps) do
end
end
Commit Your Progress
DockYard Academy now recommends you use the latest Release rather than forking or cloning our repository.
Run git status
to ensure there are no undesirable changes.
Then run the following in your command line from the curriculum
folder to commit your progress.
$ git add .
$ git commit -m "finish Data Traversal exercise"
$ git push
We’re proud to offer our open-source curriculum free of charge for anyone to learn from at their own pace.
We also offer a paid course where you can learn from an instructor alongside a cohort of your peers. We will accept applications for the June-August 2023 cohort soon.