Learn to See
Mix.install([
{:axon, "~> 0.5"},
{:nx, "~> 0.5"},
{:exla, "~> 0.5"},
{:stb_image, "~> 0.6"},
{:kino, "~> 0.8"}
])
Setup
Nx.global_default_backend(EXLA.Backend)
Data
defmodule CatsAndDogs do
def pipeline(paths, batch_size, target_height, target_width) do
paths
|> Enum.shuffle()
|> Task.async_stream(&parse_image/1)
|> Stream.filter(fn
{:ok, {%StbImage{}, _}} -> true
_ -> false
end)
|> Stream.map(&to_tensors(&1, target_height, target_width))
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn chunks ->
{img_chunk, label_chunk} = Enum.unzip(chunks)
{Nx.stack(img_chunk), Nx.stack(label_chunk)}
end)
end
defp parse_image(path) do
label = if String.contains?(path, "cat"), do: 0, else: 1
case StbImage.read_file(path) do
{:ok, img} -> {img, label}
_error -> :error
end
end
defp to_tensors({:ok, {img, label}}, target_height, target_width) do
img_tensor =
img
|> StbImage.resize(target_height, target_width)
|> StbImage.to_nx()
|> Nx.divide(255)
label_tensor = Nx.tensor([label])
{img_tensor, label_tensor}
end
end
{test_paths, train_paths} =
Path.wildcard("train/*.jpg")
|> Enum.shuffle()
|> Enum.split(1000)
batch_size = 128
target_height = 96
target_width = 96
train_pipeline =
CatsAndDogs.pipeline(
train_paths,
batch_size,
target_height,
target_width
)
test_pipeline =
CatsAndDogs.pipeline(
test_paths,
batch_size,
target_height,
target_width
)
Enum.take(train_pipeline, 1)
MLP Model
mlp_model =
Axon.input("images", shape: {nil, target_height, target_width, 3})
|> Axon.flatten()
|> Axon.dense(256, activation: :relu)
|> Axon.dense(128, activation: :relu)
|> Axon.dense(1, activation: :sigmoid)
mlp_trained_model_state =
mlp_model
|> Axon.Loop.trainer(:binary_cross_entropy, :adam)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(train_pipeline, %{}, epochs: 5, compiler: EXLA)
mlp_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, mlp_trained_model_state, compiler: EXLA)
Convolutional Neural Networks
path = "train/dog.5.jpg"
img =
path
|> StbImage.read_file!()
|> StbImage.to_nx()
|> Nx.transpose(axes: [:channels, :height, :width])
|> Nx.new_axis(0)
kernel =
Nx.tensor([
[-1, 0, 1],
[-1, 0, 1],
[-1, 0, 1]
])
kernel = kernel |> Nx.reshape({1, 1, 3, 3}) |> Nx.broadcast({3, 3, 3, 3})
img
|> Nx.conv(kernel)
|> Nx.as_type({:u, 8})
|> Nx.squeeze(axes: [0])
|> Nx.transpose(axes: [:height, :width, :channels])
|> Kino.Image.new()
cnn_model = Axon.input("images", shape: {nil, 96, 96, 3})
template = Nx.template({1, 96, 96, 3}, :f32)
Axon.Display.as_graph(cnn_model, template)
cnn_model =
cnn_model
|> Axon.conv(32,
kernel_size: {3, 3},
padding: :same,
activation: :relu
)
Axon.Display.as_graph(cnn_model, template)
cnn_model =
cnn_model
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
Axon.Display.as_graph(cnn_model, template)
cnn_model =
cnn_model
|> Axon.conv(64, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
|> Axon.conv(128, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
cnn_model =
cnn_model
|> Axon.flatten()
|> Axon.dense(128, activation: :relu)
|> Axon.dense(1, activation: :sigmoid)
cnn_model =
Axon.input("images", shape: {nil, 96, 96, 3})
|> Axon.conv(32, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
|> Axon.conv(64, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
|> Axon.conv(128, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
|> Axon.flatten()
|> Axon.dense(128, activation: :relu)
|> Axon.dense(1, activation: :sigmoid)
cnn_trained_model_state =
cnn_model
|> Axon.Loop.trainer(:binary_cross_entropy, :adam)
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(train_pipeline, %{}, epochs: 5, compiler: EXLA)
cnn_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, cnn_trained_model_state, compiler: EXLA)
Improve Training
defmodule CatsAndDogsImproved do
def pipeline_with_augmentations(paths, batch_size, target_height, target_width) do
paths
|> Enum.shuffle()
|> Task.async_stream(&parse_image/1)
|> Stream.filter(fn
{:ok, {%StbImage{}, _}} -> true
_ -> false
end)
|> Stream.map(&to_tensors(&1, target_height, target_width))
|> Stream.map(&random_flip(&1, :height))
|> Stream.map(&random_flip(&1, :width))
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn chunks ->
{img_chunk, label_chunk} = Enum.unzip(chunks)
{Nx.stack(img_chunk), Nx.stack(label_chunk)}
end)
end
def pipeline(paths, batch_size, target_height, target_width) do
paths
|> Enum.shuffle()
|> Task.async_stream(&parse_image/1)
|> Stream.filter(fn
{:ok, {%StbImage{}, _}} -> true
_ -> false
end)
|> Stream.map(&to_tensors(&1, target_height, target_width))
|> Stream.chunk_every(batch_size, batch_size, :discard)
|> Stream.map(fn chunks ->
{img_chunk, label_chunk} = Enum.unzip(chunks)
{Nx.stack(img_chunk), Nx.stack(label_chunk)}
end)
end
defp parse_image(path) do
label = if String.contains?(path, "cat"), do: 0, else: 1
case StbImage.read_file(path) do
{:ok, img} -> {img, label}
_error -> :error
end
end
defp to_tensors({:ok, {img, label}}, target_height, target_width) do
img_tensor =
img
|> StbImage.resize(target_height, target_width)
|> StbImage.to_nx()
|> Nx.divide(255)
label_tensor = Nx.tensor([label])
{img_tensor, label_tensor}
end
defp random_flip({image, label}, axis) do
if :rand.uniform() < 0.5 do
{Nx.reverse(image, axes: [axis]), label}
else
{image, label}
end
end
end
{test_paths, train_paths} =
Path.wildcard("train/*.jpg")
|> Enum.shuffle()
|> Enum.split(1000)
{test_paths, val_paths} = test_paths |> Enum.split(750)
batch_size = 128
target_height = 96
target_width = 96
train_pipeline =
CatsAndDogsImproved.pipeline_with_augmentations(
train_paths,
batch_size,
target_height,
target_width
)
val_pipeline =
CatsAndDogsImproved.pipeline(
val_paths,
batch_size,
target_height,
target_width
)
test_pipeline =
CatsAndDogsImproved.pipeline(
test_paths,
batch_size,
target_height,
target_width
)
Enum.take(train_pipeline, 1)
cnn_model =
Axon.input("images", shape: {nil, 96, 96, 3})
|> Axon.conv(32, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.batch_norm()
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
|> Axon.conv(64, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.batch_norm()
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
|> Axon.conv(128, kernel_size: {3, 3}, activation: :relu, padding: :same)
|> Axon.max_pool(kernel_size: {2, 2}, strides: [2, 2])
|> Axon.flatten()
|> Axon.dense(128, activation: :relu)
|> Axon.dropout(rate: 0.5)
|> Axon.dense(1, activation: :sigmoid)
cnn_trained_model_state =
cnn_model
|> Axon.Loop.trainer(:binary_cross_entropy, Axon.Optimizers.adam(1.0e-3))
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.validate(cnn_model, val_pipeline)
|> Axon.Loop.early_stop("validation_loss", mode: :min)
|> Axon.Loop.run(train_pipeline, %{}, epochs: 100, compiler: EXLA)
cnn_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(:accuracy)
|> Axon.Loop.run(test_pipeline, cnn_trained_model_state, compiler: EXLA)