Image Classification Server A
Mix.install(
[
{:nx, "~> 0.8"},
{:exla, "~> 0.8"},
{:axon_onnx, "~> 0.4", git: "https://github.com/mortont/axon_onnx/"},
{:kino, "~> 0.14"}
],
config: [nx: [default_backend: EXLA.Backend]]
)
Load models
Nx.Defn.default_options(compiler: EXLA)
Nx.global_default_backend(EXLA.Backend)
classes = ["clear", "cloudy"]
model_path = "/tmp/sorabatake/efficientnet_v2_m.onnx"
{model, params} = AxonOnnx.import(model_path)
Serve
defmodule EfficientNetV2 do
import Nx.Defn
defn normalize(tensor) do
(tensor - Nx.tensor([0.485, 0.456, 0.406])) / Nx.tensor([0.229, 0.224, 0.225])
end
defn transform_for_input(img_tensor) do
(img_tensor / 255)
|> normalize()
|> Nx.transpose(axes: [2, 0, 1])
end
defn get_top_class_index(outputs) do
Nx.argmax(outputs, axis: 1)
end
defn softmax(tensor) do
Nx.exp(tensor) / Nx.sum(Nx.exp(tensor), axes: [-1], keep_axes: true)
end
defn get_top_class_score(outputs) do
outputs
|> softmax()
|> Nx.reduce_max(axes: [-1])
end
def preprocess(tensor_list, batch_size) do
tensor_list
|> Enum.map(fn tensor ->
transform_for_input(tensor)
end)
|> Nx.Batch.stack()
|> Nx.Batch.pad(batch_size - Enum.count(tensor_list))
end
def postprocess(outputs, classes) do
predicted_classes = get_top_class_index(outputs)
predicted_scores = get_top_class_score(outputs)
output_size =
outputs
|> Nx.shape()
|> elem(0)
0..(output_size - 1)
|> Enum.to_list()
|> Enum.map(fn index ->
predicted_class =
predicted_classes[index]
|> Nx.to_number()
|> then(&Enum.at(classes, &1))
predicted_score = Nx.to_number(predicted_scores[index])
%{
predicted_class: predicted_class,
predicted_score: predicted_score
}
end)
end
def predict(input_batch, model, params) do
Axon.predict(model, params, input_batch)
end
end
frame = Kino.Frame.new()
batch_size = 4
serving =
Nx.Serving.new(
fn _ ->
fn input_batch ->
EfficientNetV2.predict(input_batch, model, params)
end
end,
compiler: EXLA
)
|> Nx.Serving.process_options(batch_size: batch_size)
|> Nx.Serving.client_preprocessing(fn tensor_list ->
input_batch = EfficientNetV2.preprocess(tensor_list, batch_size)
{input_batch, :client_info}
end)
|> Nx.Serving.client_postprocessing(fn {outputs, _metadata}, _multi? ->
predictions =
EfficientNetV2.postprocess(outputs, classes)
predictions
|> Enum.map(fn prediction ->
prediction.predicted_class
end)
|> Enum.join(", ")
|> then(&Kino.Frame.render(frame, &1))
predictions
end)
dummy_tensor =
0
|> Nx.broadcast({224, 224, 3})
|> Nx.as_type(:u8)
Nx.Serving.run(serving, [dummy_tensor])
Kino.start_child({Nx.Serving, serving: serving, name: ImageClassification})
Nx.Serving.batched_run({:distributed, ImageClassification}, [dummy_tensor])
Get connection info
{node(), Node.get_cookie()}